增强比特币交易确认预测:结合神经网络和 XGBoost 的混合模型

{"title":"增强比特币交易确认预测:结合神经网络和 XGBoost 的混合模型","authors":"","doi":"10.1007/s11280-023-01212-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (<strong>Hybrid-CTEN</strong>), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing bitcoin transaction confirmation prediction: a hybrid model combining neural networks and XGBoost\",\"authors\":\"\",\"doi\":\"10.1007/s11280-023-01212-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (<strong>Hybrid-CTEN</strong>), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01212-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01212-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 随着比特币被公认为最受欢迎的加密货币,预计会有更多的比特币交易填充到比特币区块链系统中。因此,许多交易可能会遇到不同的确认延迟。有鉴于此,帮助用户了解交易在比特币区块链中得到确认可能需要多长时间(如果可能的话)变得至关重要。在这项工作中,我们要解决的问题是预测一个区块间隔内的确认时间,而不是确定一个具体的时间戳。在将未来划分为一组区块区间(即类)后,交易确认的预测被视为一个分类问题。为了解决这个问题,我们提出了一个基于神经网络和 XGBoost 的框架--混合确认时间估算网络(Hybrid-CTEN),利用三种不同的信息来源预测比特币区块链系统中的交易确认时间:区块链中的历史交易、内存池中未确认的交易以及估计的交易本身。最后,真实区块链数据的实验表明,除了 XGBoost 在二元分类(预测交易是否会在下一个生成的区块中得到确认)情况下表现出色外,我们提出的框架 Hybrid-CTEN 在所有多类分类情况(4 类、6 类和 8 类)下的精确度、召回率和 f1 分数都优于最先进的方法,可以预测交易将在未来哪个区块区间得到确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing bitcoin transaction confirmation prediction: a hybrid model combining neural networks and XGBoost

Abstract

With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (Hybrid-CTEN), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信