论两次质数阶的立方弧透图的边透元盖

Pub Date : 2023-12-26 DOI:10.1007/s10801-023-01287-7
Xue Wang, Jin-Xin Zhou, Jaeun Lee
{"title":"论两次质数阶的立方弧透图的边透元盖","authors":"Xue Wang, Jin-Xin Zhou, Jaeun Lee","doi":"10.1007/s10801-023-01287-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>p</i> be a prime, and let <span>\\(\\Lambda _{2p}\\)</span> be a connected cubic arc-transitive graph of order 2<i>p</i>. In the literature, a lot of works have been done on the classification of edge-transitive normal covers of <span>\\(\\Lambda _{2p}\\)</span> for specific <span>\\(p\\le 7\\)</span>. An interesting problem is to generalize these results to an arbitrary prime <i>p</i>. In 2014, Zhou and Feng classified edge-transitive cyclic or dihedral normal covers of <span>\\(\\Lambda _{2p}\\)</span> for each prime <i>p</i>. In our previous work, we classified all edge-transitive <i>N</i>-normal covers of <span>\\(\\Lambda _{2p}\\)</span>, where <i>p</i> is a prime and <i>N</i> is a metacyclic 2-group. In this paper, we give a classification of edge-transitive <i>N</i>-normal covers of <span>\\(\\Lambda _{2p}\\)</span>, where <span>\\(p\\ge 5\\)</span> is a prime and <i>N</i> is a metacyclic group of odd prime power order.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On edge-transitive metacyclic covers of cubic arc-transitive graphs of order twice a prime\",\"authors\":\"Xue Wang, Jin-Xin Zhou, Jaeun Lee\",\"doi\":\"10.1007/s10801-023-01287-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>p</i> be a prime, and let <span>\\\\(\\\\Lambda _{2p}\\\\)</span> be a connected cubic arc-transitive graph of order 2<i>p</i>. In the literature, a lot of works have been done on the classification of edge-transitive normal covers of <span>\\\\(\\\\Lambda _{2p}\\\\)</span> for specific <span>\\\\(p\\\\le 7\\\\)</span>. An interesting problem is to generalize these results to an arbitrary prime <i>p</i>. In 2014, Zhou and Feng classified edge-transitive cyclic or dihedral normal covers of <span>\\\\(\\\\Lambda _{2p}\\\\)</span> for each prime <i>p</i>. In our previous work, we classified all edge-transitive <i>N</i>-normal covers of <span>\\\\(\\\\Lambda _{2p}\\\\)</span>, where <i>p</i> is a prime and <i>N</i> is a metacyclic 2-group. In this paper, we give a classification of edge-transitive <i>N</i>-normal covers of <span>\\\\(\\\\Lambda _{2p}\\\\)</span>, where <span>\\\\(p\\\\ge 5\\\\)</span> is a prime and <i>N</i> is a metacyclic group of odd prime power order.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01287-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01287-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 p 是一个质数,让 \(\Lambda _{2p}\) 是一个阶数为 2p 的连通立方弧遍历图。在文献中,已经有很多人针对特定的 \(p\le 7\) 对 \(\Lambda _{2p}\) 的边传递法向盖进行了分类。在我们之前的工作中,我们对 \(\Lambda _{2p}\) 的所有边缘传递 N-normal cover 进行了分类,其中 p 是素数,N 是元环 2 群。在本文中,我们给出了 \(\Lambda _{2p}\) 的边跨 N-normal 盖的分类,其中 \(p\ge 5\) 是素数,N 是奇素数幂次的元环群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On edge-transitive metacyclic covers of cubic arc-transitive graphs of order twice a prime

Let p be a prime, and let \(\Lambda _{2p}\) be a connected cubic arc-transitive graph of order 2p. In the literature, a lot of works have been done on the classification of edge-transitive normal covers of \(\Lambda _{2p}\) for specific \(p\le 7\). An interesting problem is to generalize these results to an arbitrary prime p. In 2014, Zhou and Feng classified edge-transitive cyclic or dihedral normal covers of \(\Lambda _{2p}\) for each prime p. In our previous work, we classified all edge-transitive N-normal covers of \(\Lambda _{2p}\), where p is a prime and N is a metacyclic 2-group. In this paper, we give a classification of edge-transitive N-normal covers of \(\Lambda _{2p}\), where \(p\ge 5\) is a prime and N is a metacyclic group of odd prime power order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信