施赖尔集合的计数联合

IF 0.6 4区 数学 Q3 MATHEMATICS
KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA
{"title":"施赖尔集合的计数联合","authors":"KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA","doi":"10.1017/s0004972723001326","DOIUrl":null,"url":null,"abstract":"A subset of positive integers <jats:italic>F</jats:italic> is a Schreier set if it is nonempty and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline1.png\" /> <jats:tex-math> $|F|\\leqslant \\min F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline2.png\" /> <jats:tex-math> $|F|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of <jats:italic>F</jats:italic>). For each positive integer <jats:italic>k</jats:italic>, we define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline3.png\" /> <jats:tex-math> $k\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the collection of all the unions of at most <jats:italic>k</jats:italic> Schreier sets. Also, for each positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline4.png\" /> <jats:tex-math> $(k\\mathcal {S})^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the collection of all sets in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline5.png\" /> <jats:tex-math> $k\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximum element equal to <jats:italic>n</jats:italic>. It is well known that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline6.png\" /> <jats:tex-math> $(|(1\\mathcal {S})^n|)_{n=1}^\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline7.png\" /> <jats:tex-math> $(|(k\\mathcal {S})^n|)_{n=1}^\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a linear recurrence for every positive <jats:italic>k</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COUNTING UNIONS OF SCHREIER SETS\",\"authors\":\"KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA\",\"doi\":\"10.1017/s0004972723001326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset of positive integers <jats:italic>F</jats:italic> is a Schreier set if it is nonempty and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline1.png\\\" /> <jats:tex-math> $|F|\\\\leqslant \\\\min F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline2.png\\\" /> <jats:tex-math> $|F|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of <jats:italic>F</jats:italic>). For each positive integer <jats:italic>k</jats:italic>, we define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline3.png\\\" /> <jats:tex-math> $k\\\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the collection of all the unions of at most <jats:italic>k</jats:italic> Schreier sets. Also, for each positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline4.png\\\" /> <jats:tex-math> $(k\\\\mathcal {S})^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the collection of all sets in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline5.png\\\" /> <jats:tex-math> $k\\\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximum element equal to <jats:italic>n</jats:italic>. It is well known that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline6.png\\\" /> <jats:tex-math> $(|(1\\\\mathcal {S})^n|)_{n=1}^\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline7.png\\\" /> <jats:tex-math> $(|(k\\\\mathcal {S})^n|)_{n=1}^\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a linear recurrence for every positive <jats:italic>k</jats:italic>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001326\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001326","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个正整数子集 F 是非空的,并且 $|F|leqslant \min F$(这里 $|F|$ 是 F 的万有引力),那么它就是施赖耶集。对于每个正整数 k,我们定义 $k\mathcal {S}$ 为最多 k 个施赖尔集合的所有联合的集合。另外,对于每个正整数 n,让 $(k\mathcal {S})^n$ 成为 $k\mathcal {S}$ 中最大元素等于 n 的所有集合的集合。众所周知,序列 $(|(1\mathcal {S})^n|)_{n=1}^\infty $ 就是斐波那契序列。特别是,该序列满足线性递推。我们证明了序列 $(|(kmathcal {S})^n|)_{n=1}^infty $ 满足每一个正 k 的线性递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COUNTING UNIONS OF SCHREIER SETS
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信