KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA
{"title":"施赖尔集合的计数联合","authors":"KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA","doi":"10.1017/s0004972723001326","DOIUrl":null,"url":null,"abstract":"A subset of positive integers <jats:italic>F</jats:italic> is a Schreier set if it is nonempty and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline1.png\" /> <jats:tex-math> $|F|\\leqslant \\min F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline2.png\" /> <jats:tex-math> $|F|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of <jats:italic>F</jats:italic>). For each positive integer <jats:italic>k</jats:italic>, we define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline3.png\" /> <jats:tex-math> $k\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the collection of all the unions of at most <jats:italic>k</jats:italic> Schreier sets. Also, for each positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline4.png\" /> <jats:tex-math> $(k\\mathcal {S})^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the collection of all sets in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline5.png\" /> <jats:tex-math> $k\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximum element equal to <jats:italic>n</jats:italic>. It is well known that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline6.png\" /> <jats:tex-math> $(|(1\\mathcal {S})^n|)_{n=1}^\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline7.png\" /> <jats:tex-math> $(|(k\\mathcal {S})^n|)_{n=1}^\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a linear recurrence for every positive <jats:italic>k</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COUNTING UNIONS OF SCHREIER SETS\",\"authors\":\"KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA\",\"doi\":\"10.1017/s0004972723001326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset of positive integers <jats:italic>F</jats:italic> is a Schreier set if it is nonempty and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline1.png\\\" /> <jats:tex-math> $|F|\\\\leqslant \\\\min F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline2.png\\\" /> <jats:tex-math> $|F|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of <jats:italic>F</jats:italic>). For each positive integer <jats:italic>k</jats:italic>, we define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline3.png\\\" /> <jats:tex-math> $k\\\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the collection of all the unions of at most <jats:italic>k</jats:italic> Schreier sets. Also, for each positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline4.png\\\" /> <jats:tex-math> $(k\\\\mathcal {S})^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the collection of all sets in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline5.png\\\" /> <jats:tex-math> $k\\\\mathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximum element equal to <jats:italic>n</jats:italic>. It is well known that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline6.png\\\" /> <jats:tex-math> $(|(1\\\\mathcal {S})^n|)_{n=1}^\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001326_inline7.png\\\" /> <jats:tex-math> $(|(k\\\\mathcal {S})^n|)_{n=1}^\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a linear recurrence for every positive <jats:italic>k</jats:italic>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001326\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001326","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果一个正整数子集 F 是非空的,并且 $|F|leqslant \min F$(这里 $|F|$ 是 F 的万有引力),那么它就是施赖耶集。对于每个正整数 k,我们定义 $k\mathcal {S}$ 为最多 k 个施赖尔集合的所有联合的集合。另外,对于每个正整数 n,让 $(k\mathcal {S})^n$ 成为 $k\mathcal {S}$ 中最大元素等于 n 的所有集合的集合。众所周知,序列 $(|(1\mathcal {S})^n|)_{n=1}^\infty $ 就是斐波那契序列。特别是,该序列满足线性递推。我们证明了序列 $(|(kmathcal {S})^n|)_{n=1}^infty $ 满足每一个正 k 的线性递归。
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society