{"title":"解决风险厌恶随机程序的样本平均近似法的一阶渐近性","authors":"Volker Krätschmer","doi":"10.1007/s10107-023-02036-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First order asymptotics of the sample average approximation method to solve risk averse stochastic programs\",\"authors\":\"Volker Krätschmer\",\"doi\":\"10.1007/s10107-023-02036-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-023-02036-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02036-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了随机程序的样本平均近似法最优值的统计特性,延续了(Krätschmer 在《解决风险厌恶随机程序的样本平均近似法误差的非渐近上限估计》中的研究,2023.即将发表于 SIAM J. Optim.)。针对最优值推导出了中心极限定理类型的结果。研究的关键点是基于经验过程理论中的新型条件,这些条件并不依赖于目标函数的路径分析特性。特别是,没有像有关样本平均逼近法的文献中通常那样,事先强加参数的连续性或凸性。研究还表明,如果目标函数的路径是荷尔德连续的,那么新条件就会得到满足,因此主要结果在这种情况下也是如此。此外,主要结果还适用于路径为片断荷尔德连续的目标函数,例如两阶段混合整数程序。主要结果针对经典的风险中性随机程序,但我们也演示了如何将这些结果应用于风险规避随机程序的抽样平均逼近。在这方面,我们考虑了以绝对半偏差和发散风险度量表示的随机程序。
First order asymptotics of the sample average approximation method to solve risk averse stochastic programs
We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.