解决风险厌恶随机程序的样本平均近似法的一阶渐近性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Volker Krätschmer
{"title":"解决风险厌恶随机程序的样本平均近似法的一阶渐近性","authors":"Volker Krätschmer","doi":"10.1007/s10107-023-02036-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First order asymptotics of the sample average approximation method to solve risk averse stochastic programs\",\"authors\":\"Volker Krätschmer\",\"doi\":\"10.1007/s10107-023-02036-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-023-02036-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02036-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了随机程序的样本平均近似法最优值的统计特性,延续了(Krätschmer 在《解决风险厌恶随机程序的样本平均近似法误差的非渐近上限估计》中的研究,2023.即将发表于 SIAM J. Optim.)。针对最优值推导出了中心极限定理类型的结果。研究的关键点是基于经验过程理论中的新型条件,这些条件并不依赖于目标函数的路径分析特性。特别是,没有像有关样本平均逼近法的文献中通常那样,事先强加参数的连续性或凸性。研究还表明,如果目标函数的路径是荷尔德连续的,那么新条件就会得到满足,因此主要结果在这种情况下也是如此。此外,主要结果还适用于路径为片断荷尔德连续的目标函数,例如两阶段混合整数程序。主要结果针对经典的风险中性随机程序,但我们也演示了如何将这些结果应用于风险规避随机程序的抽样平均逼近。在这方面,我们考虑了以绝对半偏差和发散风险度量表示的随机程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First order asymptotics of the sample average approximation method to solve risk averse stochastic programs

We investigate statistical properties of the optimal value of the Sample Average Approximation of stochastic programs, continuing the study (Krätschmer in Nonasymptotic upper estimates for errors of the sample average approximation method to solve risk averse stochastic programs, 2023. Forthcoming in SIAM J. Optim.). Central Limit Theorem type results are derived for the optimal value. As a crucial point the investigations are based on a new type of conditions from the theory of empirical processes which do not rely on pathwise analytical properties of the goal functions. In particular, continuity or convexity in the parameter is not imposed in advance as usual in the literature on the Sample Average Approximation method. It is also shown that the new condition is satisfied if the paths of the goal functions are Hölder continuous so that the main results carry over in this case. Moreover, the main results are applied to goal functions whose paths are piecewise Hölder continuous as e.g. in two stage mixed-integer programs. The main results are shown for classical risk neutral stochastic programs, but we also demonstrate how to apply them to the Sample Average Approximation of risk averse stochastic programs. In this respect we consider stochastic programs expressed in terms of absolute semideviations and divergence risk measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信