(2+1)-Dimensional Ito Equation 的双周期孤子解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Wen-Hui Zhu, Jian-Guo Liu, Mohammad Asif Arefin, M. Hafiz Uddin, Ya-Kui Wu
{"title":"(2+1)-Dimensional Ito Equation 的双周期孤子解","authors":"Wen-Hui Zhu, Jian-Guo Liu, Mohammad Asif Arefin, M. Hafiz Uddin, Ya-Kui Wu","doi":"10.1155/2023/9321673","DOIUrl":null,"url":null,"abstract":"In this work, a (2 + 1)-dimensional Ito equation is investigated, which represents the generalization of the bilinear KdV equation. Abundant double-periodic soliton solutions to the (2 + 1)-dimensional Ito equation are presented by the Hirota bilinear form and a mixture of exponentials and trigonometric functions. The dynamic properties are described through some 3D graphics and contour graphics.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation\",\"authors\":\"Wen-Hui Zhu, Jian-Guo Liu, Mohammad Asif Arefin, M. Hafiz Uddin, Ya-Kui Wu\",\"doi\":\"10.1155/2023/9321673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a (2 + 1)-dimensional Ito equation is investigated, which represents the generalization of the bilinear KdV equation. Abundant double-periodic soliton solutions to the (2 + 1)-dimensional Ito equation are presented by the Hirota bilinear form and a mixture of exponentials and trigonometric functions. The dynamic properties are described through some 3D graphics and contour graphics.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9321673\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/9321673","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 (2 + 1) 维伊藤方程,它代表了双线性 KdV 方程的广义化。(2 + 1)-dimensional Ito 方程的大量双周期孤子解是由 Hirota 双线性形式以及指数和三角函数的混合物呈现的。通过一些三维图形和等高线图形描述了其动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation
In this work, a (2 + 1)-dimensional Ito equation is investigated, which represents the generalization of the bilinear KdV equation. Abundant double-periodic soliton solutions to the (2 + 1)-dimensional Ito equation are presented by the Hirota bilinear form and a mixture of exponentials and trigonometric functions. The dynamic properties are described through some 3D graphics and contour graphics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信