{"title":"使用甲醇基二元工作流体的热流器传热特性实验研究","authors":"","doi":"10.1007/s40997-023-00738-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Compared with the single working fluid, the binary mixture working fluid can further extend the operating temperature range and enhance the heat transfer performance of a thermosyphon. In this paper, an experimental test system was designed and implemented to study the heat transfer characteristics of the thermosyphon. Methanol employed as the base fluid, 10 kinds of binary mixtures were prepared by adding different volume fractions of deionized water and ethanol separately. The effects of filling ratio, heat flux, and working fluid type on the heat transfer characteristics of the thermosyphon were analyzed and discussed. Moreover, the start-up characteristics were also explored. The experimental result shows that the filling ratio has a significant impact on the performance of the thermosyphon, and the optimal filling ratio is about 30% in this study. The start-up times of the thermosyphon with different binary mixture working fluids remain consistently, which are in the range of 200–300 s. It is worth mentioning that the start-up time of methanol-based binary mixture working fluid with 5% DW is 200 s, which is nearly 33% earlier than that with 50% ethanol. The thermosyphon with methanol-based binary mixture working fluid containing 5% DW presents a reduction of 7.3 °C in the maximum temperature difference and a remarkable 57.0% decrease in thermal resistance when contrasted with the thermosyphon using methanol working fluid. The results of this paper have important significance for the practical application of methanol-based binary mixture working fluid.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Heat Transfer Characteristics of Thermosyphon with Methanol-Based Binary Working Fluid\",\"authors\":\"\",\"doi\":\"10.1007/s40997-023-00738-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Compared with the single working fluid, the binary mixture working fluid can further extend the operating temperature range and enhance the heat transfer performance of a thermosyphon. In this paper, an experimental test system was designed and implemented to study the heat transfer characteristics of the thermosyphon. Methanol employed as the base fluid, 10 kinds of binary mixtures were prepared by adding different volume fractions of deionized water and ethanol separately. The effects of filling ratio, heat flux, and working fluid type on the heat transfer characteristics of the thermosyphon were analyzed and discussed. Moreover, the start-up characteristics were also explored. The experimental result shows that the filling ratio has a significant impact on the performance of the thermosyphon, and the optimal filling ratio is about 30% in this study. The start-up times of the thermosyphon with different binary mixture working fluids remain consistently, which are in the range of 200–300 s. It is worth mentioning that the start-up time of methanol-based binary mixture working fluid with 5% DW is 200 s, which is nearly 33% earlier than that with 50% ethanol. The thermosyphon with methanol-based binary mixture working fluid containing 5% DW presents a reduction of 7.3 °C in the maximum temperature difference and a remarkable 57.0% decrease in thermal resistance when contrasted with the thermosyphon using methanol working fluid. The results of this paper have important significance for the practical application of methanol-based binary mixture working fluid.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-023-00738-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00738-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Study on Heat Transfer Characteristics of Thermosyphon with Methanol-Based Binary Working Fluid
Abstract
Compared with the single working fluid, the binary mixture working fluid can further extend the operating temperature range and enhance the heat transfer performance of a thermosyphon. In this paper, an experimental test system was designed and implemented to study the heat transfer characteristics of the thermosyphon. Methanol employed as the base fluid, 10 kinds of binary mixtures were prepared by adding different volume fractions of deionized water and ethanol separately. The effects of filling ratio, heat flux, and working fluid type on the heat transfer characteristics of the thermosyphon were analyzed and discussed. Moreover, the start-up characteristics were also explored. The experimental result shows that the filling ratio has a significant impact on the performance of the thermosyphon, and the optimal filling ratio is about 30% in this study. The start-up times of the thermosyphon with different binary mixture working fluids remain consistently, which are in the range of 200–300 s. It is worth mentioning that the start-up time of methanol-based binary mixture working fluid with 5% DW is 200 s, which is nearly 33% earlier than that with 50% ethanol. The thermosyphon with methanol-based binary mixture working fluid containing 5% DW presents a reduction of 7.3 °C in the maximum temperature difference and a remarkable 57.0% decrease in thermal resistance when contrasted with the thermosyphon using methanol working fluid. The results of this paper have important significance for the practical application of methanol-based binary mixture working fluid.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.