David Lemonnier , Ikram Mezghani , Georgios Theocharidis , Brandon J. Sumpio , Samuel K. Sia , Aristidis Veves , Parag V. Chitnis
{"title":"用于评估伤口愈合过程中血管重塑的无对比高帧率超声波成像技术","authors":"David Lemonnier , Ikram Mezghani , Georgios Theocharidis , Brandon J. Sumpio , Samuel K. Sia , Aristidis Veves , Parag V. Chitnis","doi":"10.1016/j.irbm.2023.100818","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Monitoring of wound healing progression is critical due to the risk of infection, non-healing wounds, or evolution towards a chronic state. Tissue vasculature is one of the most representative features reflecting healing status. This study explores the feasibility of vascular ultrasound imaging of open wounds and the extraction of vascular-related features in a longitudinal study.</p></div><div><h3>Material and methods</h3><p>C57BL/6 mice received a 1 cm-diameter full-thickness wound on their dorsum and were imaged using ultrasound from the surgical day (Day 0) to 25 days post-wounding. The high frame rate, plane waves acquisitions with a 15 MHz transducer were postprocessed with Singular Value Decomposition (SVD) filtering to provide vascular information.</p></div><div><h3>Results</h3><p>Vascularity Index (VI) calculations showed an increased vascular signal in the wound from Day 2 post-wounding and were significantly higher from day 6 to day 10 post-wounding compared to Day 0 (p<0.05). VI values were back to the basal level after 3 weeks. In comparison, no significant difference was highlighted for the vascular signal in the peri-wound area.</p></div><div><h3>Conclusions</h3><p>These results show that vascular ultrasound imaging can be applied to track vascular changes of open wounds during the healing process. This approach may also be extended to other types of wounds for detecting early signs likely to cause complications.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 1","pages":"Article 100818"},"PeriodicalIF":5.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1959031823000672/pdfft?md5=a990e9fa0f9e6fcd12e5b1ae999b89ef&pid=1-s2.0-S1959031823000672-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Contrast-Free High Frame Rate Ultrasound Imaging for Assessment of Vascular Remodeling During Wound Healing\",\"authors\":\"David Lemonnier , Ikram Mezghani , Georgios Theocharidis , Brandon J. Sumpio , Samuel K. Sia , Aristidis Veves , Parag V. Chitnis\",\"doi\":\"10.1016/j.irbm.2023.100818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Monitoring of wound healing progression is critical due to the risk of infection, non-healing wounds, or evolution towards a chronic state. Tissue vasculature is one of the most representative features reflecting healing status. This study explores the feasibility of vascular ultrasound imaging of open wounds and the extraction of vascular-related features in a longitudinal study.</p></div><div><h3>Material and methods</h3><p>C57BL/6 mice received a 1 cm-diameter full-thickness wound on their dorsum and were imaged using ultrasound from the surgical day (Day 0) to 25 days post-wounding. The high frame rate, plane waves acquisitions with a 15 MHz transducer were postprocessed with Singular Value Decomposition (SVD) filtering to provide vascular information.</p></div><div><h3>Results</h3><p>Vascularity Index (VI) calculations showed an increased vascular signal in the wound from Day 2 post-wounding and were significantly higher from day 6 to day 10 post-wounding compared to Day 0 (p<0.05). VI values were back to the basal level after 3 weeks. In comparison, no significant difference was highlighted for the vascular signal in the peri-wound area.</p></div><div><h3>Conclusions</h3><p>These results show that vascular ultrasound imaging can be applied to track vascular changes of open wounds during the healing process. This approach may also be extended to other types of wounds for detecting early signs likely to cause complications.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"45 1\",\"pages\":\"Article 100818\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000672/pdfft?md5=a990e9fa0f9e6fcd12e5b1ae999b89ef&pid=1-s2.0-S1959031823000672-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000672\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Contrast-Free High Frame Rate Ultrasound Imaging for Assessment of Vascular Remodeling During Wound Healing
Background
Monitoring of wound healing progression is critical due to the risk of infection, non-healing wounds, or evolution towards a chronic state. Tissue vasculature is one of the most representative features reflecting healing status. This study explores the feasibility of vascular ultrasound imaging of open wounds and the extraction of vascular-related features in a longitudinal study.
Material and methods
C57BL/6 mice received a 1 cm-diameter full-thickness wound on their dorsum and were imaged using ultrasound from the surgical day (Day 0) to 25 days post-wounding. The high frame rate, plane waves acquisitions with a 15 MHz transducer were postprocessed with Singular Value Decomposition (SVD) filtering to provide vascular information.
Results
Vascularity Index (VI) calculations showed an increased vascular signal in the wound from Day 2 post-wounding and were significantly higher from day 6 to day 10 post-wounding compared to Day 0 (p<0.05). VI values were back to the basal level after 3 weeks. In comparison, no significant difference was highlighted for the vascular signal in the peri-wound area.
Conclusions
These results show that vascular ultrasound imaging can be applied to track vascular changes of open wounds during the healing process. This approach may also be extended to other types of wounds for detecting early signs likely to cause complications.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…