进化稳定策略和立方向量场

Jefferson Bastos, Claudio Buzzi, Paulo Santana
{"title":"进化稳定策略和立方向量场","authors":"Jefferson Bastos, Claudio Buzzi, Paulo Santana","doi":"10.1007/s00030-023-00894-4","DOIUrl":null,"url":null,"abstract":"<p>The introduction of concepts of Game Theory and Ordinary Differential Equations into Biology gave birth to the field of Evolutionary Stable Strategies, with applications in Biology, Genetics, Politics, Economics and others. In special, the model composed by two players having two pure strategies each results in a planar cubic vector field with an invariant octothorpe. Therefore, in this paper we study such class of vector fields, suggesting the notion of genericity and providing the global phase portraits of the generic systems with a singularity at the central region of the octothorpe.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary stable strategies and cubic vector fields\",\"authors\":\"Jefferson Bastos, Claudio Buzzi, Paulo Santana\",\"doi\":\"10.1007/s00030-023-00894-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The introduction of concepts of Game Theory and Ordinary Differential Equations into Biology gave birth to the field of Evolutionary Stable Strategies, with applications in Biology, Genetics, Politics, Economics and others. In special, the model composed by two players having two pure strategies each results in a planar cubic vector field with an invariant octothorpe. Therefore, in this paper we study such class of vector fields, suggesting the notion of genericity and providing the global phase portraits of the generic systems with a singularity at the central region of the octothorpe.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00894-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00894-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将博弈论和常微分方程的概念引入生物学后,诞生了 "进化稳定策略"(Evolutionary Stable Strategies)领域,并应用于生物学、遗传学、政治学、经济学等领域。在特殊情况下,由各拥有两种纯策略的两个玩家组成的模型会产生一个平面立方向量场,该向量场有一个不变的八矢量。因此,我们在本文中研究了这类向量场,提出了通用性概念,并提供了在八角中心区域具有奇点的通用系统的全局相位图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolutionary stable strategies and cubic vector fields

Evolutionary stable strategies and cubic vector fields

The introduction of concepts of Game Theory and Ordinary Differential Equations into Biology gave birth to the field of Evolutionary Stable Strategies, with applications in Biology, Genetics, Politics, Economics and others. In special, the model composed by two players having two pure strategies each results in a planar cubic vector field with an invariant octothorpe. Therefore, in this paper we study such class of vector fields, suggesting the notion of genericity and providing the global phase portraits of the generic systems with a singularity at the central region of the octothorpe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信