基于多模型集合的干旱集水区径流变化分析--中亚塔里木河流域案例研究

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Xiaoyu Gao, Gonghuan Fang, Yaning Chen, Xueqi Zhang
{"title":"基于多模型集合的干旱集水区径流变化分析--中亚塔里木河流域案例研究","authors":"Xiaoyu Gao, Gonghuan Fang, Yaning Chen, Xueqi Zhang","doi":"10.3389/feart.2023.1249107","DOIUrl":null,"url":null,"abstract":"Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 10<jats:sup>4</jats:sup> km<jats:sup>2</jats:sup>, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 10<jats:sup>8</jats:sup> m<jats:sup>3</jats:sup>, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of runoff variations in an arid catchment based on multi-model ensemble- a case study in the Tarim River Basin in Central Asia\",\"authors\":\"Xiaoyu Gao, Gonghuan Fang, Yaning Chen, Xueqi Zhang\",\"doi\":\"10.3389/feart.2023.1249107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 10<jats:sup>4</jats:sup> km<jats:sup>2</jats:sup>, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 10<jats:sup>8</jats:sup> m<jats:sup>3</jats:sup>, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2023.1249107\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2023.1249107","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

径流变化对一个地区(尤其是干旱地区)当前和未来的水资源供应具有重要意义,对经济和社会发展起着至关重要的作用。塔里木河流域面积约 102 × 104 平方公里,是中国最大的内陆河流域。由于该流域气候极为干旱,水资源短缺是制约该地区社会经济发展的最关键自然因素。本研究利用历史观测资料和多种模型预测,重点分析了塔里木河流域四条上游河道(开都河、阿克苏河、叶尔羌河和和田河)历史和未来的径流变化。结果表明,1957-2022 年间塔里木河四条干流的径流量呈上升趋势,显著增加了 40.70 × 108 立方米,增幅达 18%。气温升高和降水量增加是径流量增加的主要原因。气温升高会加速冰川融化,导致融水补给增强,而降水增多也会促进河流径流量的增加。根据扩展的 SWAT(水土评估工具)模拟结果,开都河、阿克苏河、叶尔羌河和和田河的径流量在不久的将来(-2035 年)仍将保持在较高水平,平均增幅为 3.2%-7.55% 。21 世纪中叶(2036-2065 年),源于昆仑山和喀喇昆仑山的叶尔羌河和和田河径流预计将继续增加 6.25%-15.2% 左右。在 SSP126 情景下,流域内冰川融化径流的临界点可能出现在 2058 年,而在 SSP370 和 SSP585 情景下,临界点可能出现在 2080 年左右。峰值水量出现的时间与亚洲山区的预测一致,但与热带安第斯山脉、加拿大西部和瑞士阿尔卑斯山相比要晚一些,因为这些地区的峰值水量已经出现。这项研究的结果可以为塔里木河流域水资源的分配和有效利用提供科学依据,并对山区即将发生的径流变化提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of runoff variations in an arid catchment based on multi-model ensemble- a case study in the Tarim River Basin in Central Asia
Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 104 km2, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 108 m3, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信