{"title":"基于多模型集合的干旱集水区径流变化分析--中亚塔里木河流域案例研究","authors":"Xiaoyu Gao, Gonghuan Fang, Yaning Chen, Xueqi Zhang","doi":"10.3389/feart.2023.1249107","DOIUrl":null,"url":null,"abstract":"Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 10<jats:sup>4</jats:sup> km<jats:sup>2</jats:sup>, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 10<jats:sup>8</jats:sup> m<jats:sup>3</jats:sup>, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of runoff variations in an arid catchment based on multi-model ensemble- a case study in the Tarim River Basin in Central Asia\",\"authors\":\"Xiaoyu Gao, Gonghuan Fang, Yaning Chen, Xueqi Zhang\",\"doi\":\"10.3389/feart.2023.1249107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 10<jats:sup>4</jats:sup> km<jats:sup>2</jats:sup>, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 10<jats:sup>8</jats:sup> m<jats:sup>3</jats:sup>, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2023.1249107\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2023.1249107","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of runoff variations in an arid catchment based on multi-model ensemble- a case study in the Tarim River Basin in Central Asia
Runoff variation is of significant importance to the current and future water availability of a region, particularly in arid regions, and plays a crucial role in economic and social development. The Tarim River Basin, spanning an area of approximately 102 × 104 km2, is the largest inland river basin in China. Due to the basin’s extremely dry climate, water shortage is the most critical natural factor restricting socio-economic development in the region. This study focuses on analyzing the historical and future runoff changes of the four headstreams (the Kaidu, Aksu, Yarkand, and Hotan rivers) in the Tarim River Basin with historical observations and multiple-model projections. The results indicate that the runoff of the Tarim’s four headstreams showed an increasing trend during 1957–2022, with a remarkable increment of 40.70 × 108 m3, or 18% in percentage. Rising temperatures and precipitation are the main reasons for the runoff’s increase. Higher temperature accelerates the melting of glaciers, leading to enhanced recharge of meltwater, while more precipitation also boosts the increase in river runoff. Based on the modelling results from the extended SWAT (Soil and Water Assessment Tool), the runoff in the Kaidu, Aksu, Yarkand, and Hotan rivers will remain at a high level in the near future (−2035), with an average increase of 3.2%–7.55%. In the mid 21st century (2036–2065), the runoff of the Yarkand and Hotan River originated from the Kunlun and Karakoram mountains is expected to continue increasing by around 6.25%–15.2%. Under SSP126, the tipping point of glacier melt runoff in the basin may happen by 2058, while under SSP370 and SSP585 scenarios, it may be around 2080. The timing of peak water aligns with projections in the mountainous Asia, but is later compared to the tropical Andes, Western Canada, and the Swiss Alps, whose peak water has already been reached. The results of this study can provide a scientific basis for the allocation and efficient utilization of water resources in the Tarim River Basin and offer valuable insights into the forthcoming runoff changes in mountainous regions.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.