本地网络统计的中心极限定理

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-12-22 DOI:10.1093/biomet/asad080
P A Maugis
{"title":"本地网络统计的中心极限定理","authors":"P A Maugis","doi":"10.1093/biomet/asad080","DOIUrl":null,"url":null,"abstract":"Summary Subgraph counts, in particular the number of occurrences of small shapes such as triangles, characterize properties of random networks. As a result, they have seen wide use as network summary statistics. Subgraphs are typically counted globally, making existing approaches unable to describe vertex-specific characteristics. In contrast, rooted subgraphs focus on vertex neighbourhoods, and are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes most statistical network models. This result enables a shift in the statistical analysis of graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that gender and race are significant predictors of local friendship patterns.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central limit theorems for local network statistics\",\"authors\":\"P A Maugis\",\"doi\":\"10.1093/biomet/asad080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Subgraph counts, in particular the number of occurrences of small shapes such as triangles, characterize properties of random networks. As a result, they have seen wide use as network summary statistics. Subgraphs are typically counted globally, making existing approaches unable to describe vertex-specific characteristics. In contrast, rooted subgraphs focus on vertex neighbourhoods, and are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes most statistical network models. This result enables a shift in the statistical analysis of graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that gender and race are significant predictors of local friendship patterns.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad080\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad080","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 子图计数,尤其是三角形等小图形的出现次数,是随机网络属性的特征。因此,它们被广泛用作网络汇总统计。子图通常是全局统计的,因此现有方法无法描述特定顶点的特征。相比之下,有根子图侧重于顶点邻域,是局部网络特性的基本描述符。我们推导出了非均质随机图中有根子图计数的渐近联合分布,这一模型概括了大多数统计网络模型。这一结果使得图的统计分析从估算网络摘要转向估算连接局部网络结构和顶点特定协变量的模型。例如,我们考虑了一个学校友谊网络,结果表明性别和种族是本地友谊模式的重要预测因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Central limit theorems for local network statistics
Summary Subgraph counts, in particular the number of occurrences of small shapes such as triangles, characterize properties of random networks. As a result, they have seen wide use as network summary statistics. Subgraphs are typically counted globally, making existing approaches unable to describe vertex-specific characteristics. In contrast, rooted subgraphs focus on vertex neighbourhoods, and are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes most statistical network models. This result enables a shift in the statistical analysis of graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that gender and race are significant predictors of local friendship patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信