随着变量数量的增加,人工神经网络在估算上肢骨折后 9 个月的患者报告结果方面优于线性回归。

Niels Brinkman, Romil Shah, Job Doornberg, David Ring, Stephen Gwilym, Prakash Jayakumar
{"title":"随着变量数量的增加,人工神经网络在估算上肢骨折后 9 个月的患者报告结果方面优于线性回归。","authors":"Niels Brinkman, Romil Shah, Job Doornberg, David Ring, Stephen Gwilym, Prakash Jayakumar","doi":"10.1097/OI9.0000000000000284","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To compare performance between linear regression (LR) and artificial neural network (ANN) models in estimating 9-month patient-reported outcomes (PROs) after upper extremity fractures using various subsets of early mental, social, and physical health variables.</p><p><strong>Methods: </strong>We studied 734 patients with isolated shoulder, elbow, or wrist fracture who completed demographics, mental and social health measures, and PROs at baseline, 2-4 weeks, and 6-9 months postinjury. PROs included 3 measures of capability (QuickDASH, PROMIS-UE-PF, PROMIS-PI) and one of pain intensity. We developed ANN and LR models with various selections of variables (20, 23, 29, 34, and 54) to estimate 9-month PROs using a training subset (70%) and internally validated them using another subset (15%). We assessed the accuracy of the estimated value being within one MCID of the actual 9-month PRO value in a test subset (15%).</p><p><strong>Results: </strong>ANNs outperformed LR in estimating 9-month outcomes in all models except the 20-variable model for capability measures and 20-variable and 23-variable models for pain intensity. The accuracy of ANN versus LR in the primary model (29-variable) was 83% versus 73% (Quick-DASH), 68% versus 65% (PROMIS-UE-PF), 66% versus 62% (PROMIS-PI), and 78% versus 65% (pain intensity). Mental and social health factors contributed most to the estimations.</p><p><strong>Conclusion: </strong>ANNs outperform LR in estimating 9-month PROs, particularly with a larger number of variables. Given the otherwise relatively comparable performance, aspects such as practicality of collecting greater sets of variables, nonparametric distribution, and presence of nonlinear correlations should be considered when deciding between these statistical methods.</p>","PeriodicalId":74381,"journal":{"name":"OTA international : the open access journal of orthopaedic trauma","volume":"6 5 Suppl","pages":"e284"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750457/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks outperform linear regression in estimating 9-month patient-reported outcomes after upper extremity fractures with increasing number of variables.\",\"authors\":\"Niels Brinkman, Romil Shah, Job Doornberg, David Ring, Stephen Gwilym, Prakash Jayakumar\",\"doi\":\"10.1097/OI9.0000000000000284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To compare performance between linear regression (LR) and artificial neural network (ANN) models in estimating 9-month patient-reported outcomes (PROs) after upper extremity fractures using various subsets of early mental, social, and physical health variables.</p><p><strong>Methods: </strong>We studied 734 patients with isolated shoulder, elbow, or wrist fracture who completed demographics, mental and social health measures, and PROs at baseline, 2-4 weeks, and 6-9 months postinjury. PROs included 3 measures of capability (QuickDASH, PROMIS-UE-PF, PROMIS-PI) and one of pain intensity. We developed ANN and LR models with various selections of variables (20, 23, 29, 34, and 54) to estimate 9-month PROs using a training subset (70%) and internally validated them using another subset (15%). We assessed the accuracy of the estimated value being within one MCID of the actual 9-month PRO value in a test subset (15%).</p><p><strong>Results: </strong>ANNs outperformed LR in estimating 9-month outcomes in all models except the 20-variable model for capability measures and 20-variable and 23-variable models for pain intensity. The accuracy of ANN versus LR in the primary model (29-variable) was 83% versus 73% (Quick-DASH), 68% versus 65% (PROMIS-UE-PF), 66% versus 62% (PROMIS-PI), and 78% versus 65% (pain intensity). Mental and social health factors contributed most to the estimations.</p><p><strong>Conclusion: </strong>ANNs outperform LR in estimating 9-month PROs, particularly with a larger number of variables. Given the otherwise relatively comparable performance, aspects such as practicality of collecting greater sets of variables, nonparametric distribution, and presence of nonlinear correlations should be considered when deciding between these statistical methods.</p>\",\"PeriodicalId\":74381,\"journal\":{\"name\":\"OTA international : the open access journal of orthopaedic trauma\",\"volume\":\"6 5 Suppl\",\"pages\":\"e284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OTA international : the open access journal of orthopaedic trauma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/OI9.0000000000000284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OTA international : the open access journal of orthopaedic trauma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/OI9.0000000000000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的比较线性回归(LR)模型和人工神经网络(ANN)模型在使用各种早期心理、社会和身体健康变量子集估算上肢骨折后 9 个月患者报告结果(PROs)方面的性能:我们研究了 734 名孤立性肩部、肘部或腕部骨折患者,他们分别在基线、2-4 周和伤后 6-9 个月完成了人口统计学、心理和社会健康测量以及患者报告结果。PROs包括3项能力测量(QuickDASH、PROMIS-UE-PF、PROMIS-PI)和一项疼痛强度测量。我们使用不同的变量选择(20、23、29、34 和 54)开发了 ANN 和 LR 模型,使用一个训练子集(70%)估算 9 个月的 PROs,并使用另一个子集(15%)对其进行了内部验证。我们在测试子集(15%)中评估了估计值与实际 9 个月 PRO 值在一个 MCID 范围内的准确性:结果:在所有模型中,ANN 在估计 9 个月的结果方面均优于 LR,但能力测量的 20 变量模型以及疼痛强度的 20 变量和 23 变量模型除外。在主要模型(29 变量)中,ANN 与 LR 的准确率分别为 83% 对 73%(Quick-DASH)、68% 对 65%(PROMIS-UE-PF)、66% 对 62%(PROMIS-PI)和 78% 对 65%(疼痛强度)。心理和社会健康因素对估计结果的影响最大:结论:在估计 9 个月的 PROs 方面,ANN 优于 LR,尤其是在变量较多的情况下。鉴于两者在其他方面的性能相对相当,在决定采用哪种统计方法时,应考虑收集更多变量集的实用性、非参数分布以及是否存在非线性相关性等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks outperform linear regression in estimating 9-month patient-reported outcomes after upper extremity fractures with increasing number of variables.

Objective: To compare performance between linear regression (LR) and artificial neural network (ANN) models in estimating 9-month patient-reported outcomes (PROs) after upper extremity fractures using various subsets of early mental, social, and physical health variables.

Methods: We studied 734 patients with isolated shoulder, elbow, or wrist fracture who completed demographics, mental and social health measures, and PROs at baseline, 2-4 weeks, and 6-9 months postinjury. PROs included 3 measures of capability (QuickDASH, PROMIS-UE-PF, PROMIS-PI) and one of pain intensity. We developed ANN and LR models with various selections of variables (20, 23, 29, 34, and 54) to estimate 9-month PROs using a training subset (70%) and internally validated them using another subset (15%). We assessed the accuracy of the estimated value being within one MCID of the actual 9-month PRO value in a test subset (15%).

Results: ANNs outperformed LR in estimating 9-month outcomes in all models except the 20-variable model for capability measures and 20-variable and 23-variable models for pain intensity. The accuracy of ANN versus LR in the primary model (29-variable) was 83% versus 73% (Quick-DASH), 68% versus 65% (PROMIS-UE-PF), 66% versus 62% (PROMIS-PI), and 78% versus 65% (pain intensity). Mental and social health factors contributed most to the estimations.

Conclusion: ANNs outperform LR in estimating 9-month PROs, particularly with a larger number of variables. Given the otherwise relatively comparable performance, aspects such as practicality of collecting greater sets of variables, nonparametric distribution, and presence of nonlinear correlations should be considered when deciding between these statistical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信