Jona Lilienthal, Sibylle Sturtz, Christoph Schürmann, Matthias Maiworm, Christian Röver, Tim Friede, Ralf Bender
{"title":"采用经验异质性先验的贝叶斯随机效应荟萃分析,应用于研究极少的卫生技术评估。","authors":"Jona Lilienthal, Sibylle Sturtz, Christoph Schürmann, Matthias Maiworm, Christian Röver, Tim Friede, Ralf Bender","doi":"10.1002/jrsm.1685","DOIUrl":null,"url":null,"abstract":"<p>In Bayesian random-effects meta-analysis, the use of weakly informative prior distributions is of particular benefit in cases where only a few studies are included, a situation often encountered in health technology assessment (HTA). Suggestions for empirical prior distributions are available in the literature but it is unknown whether these are adequate in the context of HTA. Therefore, a database of all relevant meta-analyses conducted by the Institute for Quality and Efficiency in Health Care (IQWiG, Germany) was constructed to derive empirical prior distributions for the heterogeneity parameter suitable for HTA. Previously, an extension to the normal-normal hierarchical model had been suggested for this purpose. For different effect measures, this extended model was applied on the database to conservatively derive a prior distribution for the heterogeneity parameter. Comparison of a Bayesian approach using the derived priors with IQWiG's current standard approach for evidence synthesis shows favorable properties. Therefore, these prior distributions are recommended for future meta-analyses in HTA settings and could be embedded into the IQWiG evidence synthesis approach in the case of very few studies.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 2","pages":"275-287"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1685","citationCount":"0","resultStr":"{\"title\":\"Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies\",\"authors\":\"Jona Lilienthal, Sibylle Sturtz, Christoph Schürmann, Matthias Maiworm, Christian Röver, Tim Friede, Ralf Bender\",\"doi\":\"10.1002/jrsm.1685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Bayesian random-effects meta-analysis, the use of weakly informative prior distributions is of particular benefit in cases where only a few studies are included, a situation often encountered in health technology assessment (HTA). Suggestions for empirical prior distributions are available in the literature but it is unknown whether these are adequate in the context of HTA. Therefore, a database of all relevant meta-analyses conducted by the Institute for Quality and Efficiency in Health Care (IQWiG, Germany) was constructed to derive empirical prior distributions for the heterogeneity parameter suitable for HTA. Previously, an extension to the normal-normal hierarchical model had been suggested for this purpose. For different effect measures, this extended model was applied on the database to conservatively derive a prior distribution for the heterogeneity parameter. Comparison of a Bayesian approach using the derived priors with IQWiG's current standard approach for evidence synthesis shows favorable properties. Therefore, these prior distributions are recommended for future meta-analyses in HTA settings and could be embedded into the IQWiG evidence synthesis approach in the case of very few studies.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 2\",\"pages\":\"275-287\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1685\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1685\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies
In Bayesian random-effects meta-analysis, the use of weakly informative prior distributions is of particular benefit in cases where only a few studies are included, a situation often encountered in health technology assessment (HTA). Suggestions for empirical prior distributions are available in the literature but it is unknown whether these are adequate in the context of HTA. Therefore, a database of all relevant meta-analyses conducted by the Institute for Quality and Efficiency in Health Care (IQWiG, Germany) was constructed to derive empirical prior distributions for the heterogeneity parameter suitable for HTA. Previously, an extension to the normal-normal hierarchical model had been suggested for this purpose. For different effect measures, this extended model was applied on the database to conservatively derive a prior distribution for the heterogeneity parameter. Comparison of a Bayesian approach using the derived priors with IQWiG's current standard approach for evidence synthesis shows favorable properties. Therefore, these prior distributions are recommended for future meta-analyses in HTA settings and could be embedded into the IQWiG evidence synthesis approach in the case of very few studies.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.