{"title":"采用鹈鹕-蜂群混合优化方法的窄带车载物联网通信系统用于智能交通系统","authors":"M. Vinodhini, Sujatha Rajkumar","doi":"10.1016/j.vehcom.2023.100723","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Congestion is caused by the continually expanding number of vehicles worldwide. Intelligent Transportation Systems (ITSs) could be used to build a system that efficiently uses the existing infrastructure and current technological advancements. Several </span>Vehicular applications use the restricted vehicle </span>battery<span><span><span> in V2X systems, and a key concern is communication secrecy. Earlier research has focused on channel measurement, autonomous piloting, high-speed transmissions, secretive communications, and QoS analysis but battery-limited V2X has received far less attention. Therefore, resolving the abovementioned complications in the current model is imperative. Thus, a new V2X communication model is developed based on NB-IoT (NarrowBand Internet of Things) approaches. NB -IoT is utilized in the V2X communication model to offer low-cost, high-range, and minimal power to the communication environment. The objective of the proposed NarrowBand of Vehicular Things Communication (NBVTCS)System is to analyze the performance metrics of </span>vehicular communication including energy efficiency rate with different SNR, bit error rate with different vehicular positions, and overall throughput of the system. The simulation was carried out to attain an effective energy efficiency rate, the system's transmit power, bit error rate, and overall system throughput. The proposed vehicular architecture also optimized the abovementioned vehicular metrics with the help of the proposed Hybrid Pelican Beetle Swarm Optimization (HPBSO) approach to achieve a higher accuracy in communication parameters. Finally, the </span>simulation outcome<span> demonstrates that the developed vehicular model is achieved with a minimal energy consumption rate and maximum throughput and also compares the proposed HPBSO technique with other optimization techniques including DOX, EFO, POA, and BSO.</span></span></p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow band of vehicular things communication system using hybrid pelican-beetle swarm optimization approach for intelligent transportation system\",\"authors\":\"M. Vinodhini, Sujatha Rajkumar\",\"doi\":\"10.1016/j.vehcom.2023.100723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Congestion is caused by the continually expanding number of vehicles worldwide. Intelligent Transportation Systems (ITSs) could be used to build a system that efficiently uses the existing infrastructure and current technological advancements. Several </span>Vehicular applications use the restricted vehicle </span>battery<span><span><span> in V2X systems, and a key concern is communication secrecy. Earlier research has focused on channel measurement, autonomous piloting, high-speed transmissions, secretive communications, and QoS analysis but battery-limited V2X has received far less attention. Therefore, resolving the abovementioned complications in the current model is imperative. Thus, a new V2X communication model is developed based on NB-IoT (NarrowBand Internet of Things) approaches. NB -IoT is utilized in the V2X communication model to offer low-cost, high-range, and minimal power to the communication environment. The objective of the proposed NarrowBand of Vehicular Things Communication (NBVTCS)System is to analyze the performance metrics of </span>vehicular communication including energy efficiency rate with different SNR, bit error rate with different vehicular positions, and overall throughput of the system. The simulation was carried out to attain an effective energy efficiency rate, the system's transmit power, bit error rate, and overall system throughput. The proposed vehicular architecture also optimized the abovementioned vehicular metrics with the help of the proposed Hybrid Pelican Beetle Swarm Optimization (HPBSO) approach to achieve a higher accuracy in communication parameters. Finally, the </span>simulation outcome<span> demonstrates that the developed vehicular model is achieved with a minimal energy consumption rate and maximum throughput and also compares the proposed HPBSO technique with other optimization techniques including DOX, EFO, POA, and BSO.</span></span></p></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209623001535\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209623001535","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Narrow band of vehicular things communication system using hybrid pelican-beetle swarm optimization approach for intelligent transportation system
Congestion is caused by the continually expanding number of vehicles worldwide. Intelligent Transportation Systems (ITSs) could be used to build a system that efficiently uses the existing infrastructure and current technological advancements. Several Vehicular applications use the restricted vehicle battery in V2X systems, and a key concern is communication secrecy. Earlier research has focused on channel measurement, autonomous piloting, high-speed transmissions, secretive communications, and QoS analysis but battery-limited V2X has received far less attention. Therefore, resolving the abovementioned complications in the current model is imperative. Thus, a new V2X communication model is developed based on NB-IoT (NarrowBand Internet of Things) approaches. NB -IoT is utilized in the V2X communication model to offer low-cost, high-range, and minimal power to the communication environment. The objective of the proposed NarrowBand of Vehicular Things Communication (NBVTCS)System is to analyze the performance metrics of vehicular communication including energy efficiency rate with different SNR, bit error rate with different vehicular positions, and overall throughput of the system. The simulation was carried out to attain an effective energy efficiency rate, the system's transmit power, bit error rate, and overall system throughput. The proposed vehicular architecture also optimized the abovementioned vehicular metrics with the help of the proposed Hybrid Pelican Beetle Swarm Optimization (HPBSO) approach to achieve a higher accuracy in communication parameters. Finally, the simulation outcome demonstrates that the developed vehicular model is achieved with a minimal energy consumption rate and maximum throughput and also compares the proposed HPBSO technique with other optimization techniques including DOX, EFO, POA, and BSO.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.