用于再生药理学的人体器官芯片。

IF 2.9 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Girija Goyal, Chaitra Belgur, Donald E Ingber
{"title":"用于再生药理学的人体器官芯片。","authors":"Girija Goyal, Chaitra Belgur, Donald E Ingber","doi":"10.1002/prp2.1159","DOIUrl":null,"url":null,"abstract":"<p><p>Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":"12 1","pages":"e01159"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751726/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human organ chips for regenerative pharmacology.\",\"authors\":\"Girija Goyal, Chaitra Belgur, Donald E Ingber\",\"doi\":\"10.1002/prp2.1159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology.</p>\",\"PeriodicalId\":19948,\"journal\":{\"name\":\"Pharmacology Research & Perspectives\",\"volume\":\"12 1\",\"pages\":\"e01159\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751726/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Research & Perspectives\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/prp2.1159\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.1159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

人体器官芯片(器官芯片)是一种小型微流控装置,通过再造多细胞和多组织结构并应用类似于活体的生物力学线索,可使人体细胞在体外执行复杂的器官级功能。人体器官芯片正被用于药物发现和毒理学测试,作为动物模型的替代品,因为动物模型具有伦理挑战性,而且往往不能预测临床疗效或毒性。在这篇微型综述中,我们总结了我们的演讲,回顾了与这些微流体培养装置有关的技术现状,这些装置旨在模拟特定的人体器官结构和功能,以及器官芯片在再生药理学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human organ chips for regenerative pharmacology.

Human organ chips for regenerative pharmacology.

Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacology Research & Perspectives
Pharmacology Research & Perspectives Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
5.30
自引率
3.80%
发文量
120
审稿时长
20 weeks
期刊介绍: PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信