果蝇睡眠和觉醒时的全脑电生理学

Matthew Van De Poll, Bruno van Swinderen
{"title":"果蝇睡眠和觉醒时的全脑电生理学","authors":"Matthew Van De Poll, Bruno van Swinderen","doi":"10.1101/pdb.prot108418","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep studies in <i>Drosophila melanogaster</i> rely mostly on behavioral read-outs to support molecular or circuit-level investigations in this model. Electrophysiology can provide an additional level of understanding in these studies to, for example, investigate changes in brain activity associated with sleep manipulations. In this protocol, we describe a procedure for performing multichannel local field potential (LFP) recordings in the fruit fly, with a flexible system that can be adapted to different experimental paradigms and situations. The approach uses electrodes containing multiple recording sites (16), allowing the acquisition of large amounts of neuronal activity data from a transect through the brain while flies are still able to sleep. The approach starts by tethering the fly, followed by positioning it on an air-supported ball. A multichannel silicon probe is then inserted laterally into the fly brain via one eye, allowing for recording of electrical signals from the retina through to the central brain. These recordings can be acquired under spontaneous conditions or in the presence of visual stimuli, and the minimal surgery promotes long-term recordings (e.g., overnight). Sleep and wake can be tracked using infrared cameras, which allow for the measurement of locomotive activity as well as microbehaviors such as proboscis extensions during sleep. The protocol has been optimized to promote subject survivability, which is an important factor when performing long-term (∼16-h) recordings. The approach described here uses specific recording probes, data acquisition devices, and analysis tools. Although it is expected that some of these items might need to be adapted to the equipment available in different laboratories, the overall aim is to provide an overview on how to record electrical activity across the brain of behaving (and sleeping) flies using this kind of approach and technology.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108418"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-Brain Electrophysiology in <i>Drosophila</i> during Sleep and Wake.\",\"authors\":\"Matthew Van De Poll, Bruno van Swinderen\",\"doi\":\"10.1101/pdb.prot108418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep studies in <i>Drosophila melanogaster</i> rely mostly on behavioral read-outs to support molecular or circuit-level investigations in this model. Electrophysiology can provide an additional level of understanding in these studies to, for example, investigate changes in brain activity associated with sleep manipulations. In this protocol, we describe a procedure for performing multichannel local field potential (LFP) recordings in the fruit fly, with a flexible system that can be adapted to different experimental paradigms and situations. The approach uses electrodes containing multiple recording sites (16), allowing the acquisition of large amounts of neuronal activity data from a transect through the brain while flies are still able to sleep. The approach starts by tethering the fly, followed by positioning it on an air-supported ball. A multichannel silicon probe is then inserted laterally into the fly brain via one eye, allowing for recording of electrical signals from the retina through to the central brain. These recordings can be acquired under spontaneous conditions or in the presence of visual stimuli, and the minimal surgery promotes long-term recordings (e.g., overnight). Sleep and wake can be tracked using infrared cameras, which allow for the measurement of locomotive activity as well as microbehaviors such as proboscis extensions during sleep. The protocol has been optimized to promote subject survivability, which is an important factor when performing long-term (∼16-h) recordings. The approach described here uses specific recording probes, data acquisition devices, and analysis tools. Although it is expected that some of these items might need to be adapted to the equipment available in different laboratories, the overall aim is to provide an overview on how to record electrical activity across the brain of behaving (and sleeping) flies using this kind of approach and technology.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"pdb.prot108418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

黑腹果蝇的睡眠研究主要依靠行为读数来支持该模型的分子或电路水平研究。电生理学可以为这些研究提供一个额外的理解层面,例如,研究与睡眠操作相关的大脑活动变化。在本方案中,我们介绍了在果蝇中进行多通道局部场电位(LFP)记录的程序,该系统非常灵活,可以适应不同的实验范式和情况。该方法使用包含多个记录点的电极(16),可在果蝇仍能睡眠时从大脑横断面获取大量神经元活动数据。该方法首先将苍蝇拴住,然后将其放置在一个有空气支撑的球上。然后通过一只眼睛将多通道硅探针横向插入苍蝇大脑,记录从视网膜到大脑中枢的电信号。这些记录可在自发条件下或在视觉刺激下获得,而且手术极小,有利于长期记录(如过夜)。可使用红外摄像头跟踪睡眠和觉醒情况,从而测量睡眠期间的运动活动以及探针伸展等微观行为。该方案已经过优化,以提高受试者的存活率,这是进行长期(∼16 小时)记录时的一个重要因素。本文介绍的方法使用了特定的记录探针、数据采集设备和分析工具。虽然预计其中一些项目可能需要根据不同实验室的现有设备进行调整,但总体目标是概述如何使用这种方法和技术记录行为(和睡眠)苍蝇大脑的电活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole-Brain Electrophysiology in Drosophila during Sleep and Wake.

Sleep studies in Drosophila melanogaster rely mostly on behavioral read-outs to support molecular or circuit-level investigations in this model. Electrophysiology can provide an additional level of understanding in these studies to, for example, investigate changes in brain activity associated with sleep manipulations. In this protocol, we describe a procedure for performing multichannel local field potential (LFP) recordings in the fruit fly, with a flexible system that can be adapted to different experimental paradigms and situations. The approach uses electrodes containing multiple recording sites (16), allowing the acquisition of large amounts of neuronal activity data from a transect through the brain while flies are still able to sleep. The approach starts by tethering the fly, followed by positioning it on an air-supported ball. A multichannel silicon probe is then inserted laterally into the fly brain via one eye, allowing for recording of electrical signals from the retina through to the central brain. These recordings can be acquired under spontaneous conditions or in the presence of visual stimuli, and the minimal surgery promotes long-term recordings (e.g., overnight). Sleep and wake can be tracked using infrared cameras, which allow for the measurement of locomotive activity as well as microbehaviors such as proboscis extensions during sleep. The protocol has been optimized to promote subject survivability, which is an important factor when performing long-term (∼16-h) recordings. The approach described here uses specific recording probes, data acquisition devices, and analysis tools. Although it is expected that some of these items might need to be adapted to the equipment available in different laboratories, the overall aim is to provide an overview on how to record electrical activity across the brain of behaving (and sleeping) flies using this kind of approach and technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信