Bashar Zaidat, Yash S Lahoti, Alexander Yu, Kareem S Mohamed, Samuel K Cho, Jun S Kim
{"title":"脊柱手术中的人工智能计费:大型语言模型分析。","authors":"Bashar Zaidat, Yash S Lahoti, Alexander Yu, Kareem S Mohamed, Samuel K Cho, Jun S Kim","doi":"10.1177/21925682231224753","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>Retrospective cohort study.</p><p><strong>Objectives: </strong>This study assessed the effectiveness of a popular large language model, ChatGPT-4, in predicting Current Procedural Terminology (CPT) codes from surgical operative notes. By employing a combination of prompt engineering, natural language processing (NLP), and machine learning techniques on standard operative notes, the study sought to enhance billing efficiency, optimize revenue collection, and reduce coding errors.</p><p><strong>Methods: </strong>The model was given 3 different types of prompts for 50 surgical operative notes from 2 spine surgeons. The first trial was simply asking the model to generate CPT codes for a given OP note. The second trial included 3 OP notes and associated CPT codes to, and the third trial included a list of every possible CPT code in the dataset to prime the model. CPT codes generated by the model were compared to those generated by the billing department. Model evaluation was performed in the form of calculating the area under the ROC (AUROC), and area under precision-recall curves (AUPRC).</p><p><strong>Results: </strong>The trial that involved priming ChatGPT with a list of every possible CPT code performed the best, with an AUROC of .87 and an AUPRC of .67, and an AUROC of .81 and AUPRC of .76 when examining only the most common CPT codes.</p><p><strong>Conclusions: </strong>ChatGPT-4 can aid in automating CPT billing from orthopedic surgery operative notes, driving down healthcare expenditures and enhancing billing code precision as the model evolves and fine-tuning becomes available.</p>","PeriodicalId":12680,"journal":{"name":"Global Spine Journal","volume":" ","pages":"1113-1120"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877531/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificially Intelligent Billing in Spine Surgery: An Analysis of a Large Language Model.\",\"authors\":\"Bashar Zaidat, Yash S Lahoti, Alexander Yu, Kareem S Mohamed, Samuel K Cho, Jun S Kim\",\"doi\":\"10.1177/21925682231224753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study design: </strong>Retrospective cohort study.</p><p><strong>Objectives: </strong>This study assessed the effectiveness of a popular large language model, ChatGPT-4, in predicting Current Procedural Terminology (CPT) codes from surgical operative notes. By employing a combination of prompt engineering, natural language processing (NLP), and machine learning techniques on standard operative notes, the study sought to enhance billing efficiency, optimize revenue collection, and reduce coding errors.</p><p><strong>Methods: </strong>The model was given 3 different types of prompts for 50 surgical operative notes from 2 spine surgeons. The first trial was simply asking the model to generate CPT codes for a given OP note. The second trial included 3 OP notes and associated CPT codes to, and the third trial included a list of every possible CPT code in the dataset to prime the model. CPT codes generated by the model were compared to those generated by the billing department. Model evaluation was performed in the form of calculating the area under the ROC (AUROC), and area under precision-recall curves (AUPRC).</p><p><strong>Results: </strong>The trial that involved priming ChatGPT with a list of every possible CPT code performed the best, with an AUROC of .87 and an AUPRC of .67, and an AUROC of .81 and AUPRC of .76 when examining only the most common CPT codes.</p><p><strong>Conclusions: </strong>ChatGPT-4 can aid in automating CPT billing from orthopedic surgery operative notes, driving down healthcare expenditures and enhancing billing code precision as the model evolves and fine-tuning becomes available.</p>\",\"PeriodicalId\":12680,\"journal\":{\"name\":\"Global Spine Journal\",\"volume\":\" \",\"pages\":\"1113-1120\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877531/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Spine Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21925682231224753\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682231224753","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Artificially Intelligent Billing in Spine Surgery: An Analysis of a Large Language Model.
Study design: Retrospective cohort study.
Objectives: This study assessed the effectiveness of a popular large language model, ChatGPT-4, in predicting Current Procedural Terminology (CPT) codes from surgical operative notes. By employing a combination of prompt engineering, natural language processing (NLP), and machine learning techniques on standard operative notes, the study sought to enhance billing efficiency, optimize revenue collection, and reduce coding errors.
Methods: The model was given 3 different types of prompts for 50 surgical operative notes from 2 spine surgeons. The first trial was simply asking the model to generate CPT codes for a given OP note. The second trial included 3 OP notes and associated CPT codes to, and the third trial included a list of every possible CPT code in the dataset to prime the model. CPT codes generated by the model were compared to those generated by the billing department. Model evaluation was performed in the form of calculating the area under the ROC (AUROC), and area under precision-recall curves (AUPRC).
Results: The trial that involved priming ChatGPT with a list of every possible CPT code performed the best, with an AUROC of .87 and an AUPRC of .67, and an AUROC of .81 and AUPRC of .76 when examining only the most common CPT codes.
Conclusions: ChatGPT-4 can aid in automating CPT billing from orthopedic surgery operative notes, driving down healthcare expenditures and enhancing billing code precision as the model evolves and fine-tuning becomes available.
期刊介绍:
Global Spine Journal (GSJ) is the official scientific publication of AOSpine. A peer-reviewed, open access journal, devoted to the study and treatment of spinal disorders, including diagnosis, operative and non-operative treatment options, surgical techniques, and emerging research and clinical developments.GSJ is indexed in PubMedCentral, SCOPUS, and Emerging Sources Citation Index (ESCI).