Ting Yang, Sijuan Tian, Juan Zhao, Meili Pei, Minyi Zhao, Xiaofeng Yang
{"title":"LncRNA ABHD11-AS1 通过阻止 FUS 介导的 ABHD11 mRNA 降解,激活表皮生长因子受体信号转导,从而促进宫颈癌的进展。","authors":"Ting Yang, Sijuan Tian, Juan Zhao, Meili Pei, Minyi Zhao, Xiaofeng Yang","doi":"10.1080/15384101.2023.2297591","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"2538-2551"},"PeriodicalIF":3.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936639/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA ABHD11-AS1 activates EGFR signaling to promote cervical cancer progression by preventing FUS-mediated degradation of ABHD11 mRNA.\",\"authors\":\"Ting Yang, Sijuan Tian, Juan Zhao, Meili Pei, Minyi Zhao, Xiaofeng Yang\",\"doi\":\"10.1080/15384101.2023.2297591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.</p>\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":\" \",\"pages\":\"2538-2551\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2023.2297591\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2023.2297591","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
LncRNA ABHD11-AS1 activates EGFR signaling to promote cervical cancer progression by preventing FUS-mediated degradation of ABHD11 mRNA.
Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.