Hang-Jing Tan, Zi-Heng Deng, Chun Zhang, Hong-Wen Deng, Hong-Mei Xiao
{"title":"CXADR通过调节AKT/GSK-3β信号传导促进子宫内膜异位症的上皮-间质转化。","authors":"Hang-Jing Tan, Zi-Heng Deng, Chun Zhang, Hong-Wen Deng, Hong-Mei Xiao","doi":"10.1080/15384101.2023.2296242","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further <i>in vitro</i> investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3β (GSK-3β), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3β signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802198/pdf/","citationCount":"0","resultStr":"{\"title\":\"CXADR promote epithelial-mesenchymal transition in endometriosis by modulating AKT/GSK-3β signaling.\",\"authors\":\"Hang-Jing Tan, Zi-Heng Deng, Chun Zhang, Hong-Wen Deng, Hong-Mei Xiao\",\"doi\":\"10.1080/15384101.2023.2296242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further <i>in vitro</i> investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3β (GSK-3β), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3β signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.</p>\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802198/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2023.2296242\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2023.2296242","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
子宫内膜异位症是一种良性高发疾病,具有恶性特征。然而,子宫内膜异位症的潜在发病机制和关键分子仍不清楚。通过整合和分析现有的表达谱数据集,我们发现柯萨奇和腺病毒受体(CXADR)是子宫内膜异位症的新型关键基因。根据免疫组化(IHC)结果,我们证实与健康对照组相比,子宫内膜异位症妇女异位子宫内膜组织中的 CXADR 明显下调。进一步的体外研究表明,CXADR 调节磷酸酶和 AKT 抑制剂 PHLPP2(pleckstrin homology domain and leucine-rich repeat protein phosphatase 2)和 PTEN(phosphatase and tensin homolog)的稳定性和功能。CXADR 的缺失导致 AKT 和糖原合成酶激酶-3β(GSK-3β)磷酸化,从而导致上皮-间质转化(EMT)因子 SNAIL1(蜗牛家族转录抑制因子 1)的稳定。因此,EMT 过程被诱导,石川细胞的增殖、迁移和侵袭能力增强。而过度表达 CXADR 则会产生相反的效果。这些研究结果表明,AKT/GSK-3β信号轴在调控EMT过程中的作用此前尚未明确,并揭示了CXADR诱导的EMT参与了子宫内膜异位症的发病过程。
CXADR promote epithelial-mesenchymal transition in endometriosis by modulating AKT/GSK-3β signaling.
Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further in vitro investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3β (GSK-3β), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3β signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.