利用光陷波器实现光学 MAS 磁共振

IF 2.624
Lea Marti , Nergiz Şahin Solmaz , Michal Kern , Anh Chu , Reza Farsi , Philipp Hengel , Jialiang Gao , Nicholas Alaniva , Michael A. Urban , Ronny Gunzenhauser , Alexander Däpp , Daniel Klose , Jens Anders , Giovanni Boero , Lukas Novotny , Martin Frimmer , Alexander B. Barnes
{"title":"利用光陷波器实现光学 MAS 磁共振","authors":"Lea Marti ,&nbsp;Nergiz Şahin Solmaz ,&nbsp;Michal Kern ,&nbsp;Anh Chu ,&nbsp;Reza Farsi ,&nbsp;Philipp Hengel ,&nbsp;Jialiang Gao ,&nbsp;Nicholas Alaniva ,&nbsp;Michael A. Urban ,&nbsp;Ronny Gunzenhauser ,&nbsp;Alexander Däpp ,&nbsp;Daniel Klose ,&nbsp;Jens Anders ,&nbsp;Giovanni Boero ,&nbsp;Lukas Novotny ,&nbsp;Martin Frimmer ,&nbsp;Alexander B. Barnes","doi":"10.1016/j.jmro.2023.100145","DOIUrl":null,"url":null,"abstract":"<div><p>Higher magic angle spinning (MAS) frequencies than currently available are desirable to improve spectral resolution in NMR and EPR systems. While conventional strategies employ pneumatic spinning limited by fluid dynamics, this paper demonstrates the development of an optical spinning technique in which vacuum quality dictates the maximum achievable spinning frequency. Using optical traps, we levitated a range of micron-sized samples. Under vacuum we achieved optical rotation of a single ∼10 μm diameter particle of vaterite at several mbar up to hundreds of Hz and of 20 μm diameter SiO<sub>2</sub> particles at ≤10<sup>−2</sup> mbar at several kHz. At ambient conditions, we optically levitated γ-irradiated alanine particles of 20–50 μm diameter. Additionally, using a single chip EPR detector operating at 11 GHz, we measured the EPR spectrum for a 30 μm γ-irradiated alanine particle in contact with the chip surface (i.e., without optical levitation) in a single scan lasting 92 s. These observations suggest that a γ-irradiated alanine particle having a diameter in the order of 30 μm is a promising candidate for our aim of demonstrating the first magnetic resonance experiment on optically levitated samples. Furthermore, we discuss strategies, limitations, and the potential of implementing MAS with optical traps for NMR and EPR.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"18 ","pages":"Article 100145"},"PeriodicalIF":2.6240,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000535/pdfft?md5=4e84d82c05ec47dbe1b80aae0b39bbee&pid=1-s2.0-S2666441023000535-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards optical MAS magnetic resonance using optical traps\",\"authors\":\"Lea Marti ,&nbsp;Nergiz Şahin Solmaz ,&nbsp;Michal Kern ,&nbsp;Anh Chu ,&nbsp;Reza Farsi ,&nbsp;Philipp Hengel ,&nbsp;Jialiang Gao ,&nbsp;Nicholas Alaniva ,&nbsp;Michael A. Urban ,&nbsp;Ronny Gunzenhauser ,&nbsp;Alexander Däpp ,&nbsp;Daniel Klose ,&nbsp;Jens Anders ,&nbsp;Giovanni Boero ,&nbsp;Lukas Novotny ,&nbsp;Martin Frimmer ,&nbsp;Alexander B. Barnes\",\"doi\":\"10.1016/j.jmro.2023.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Higher magic angle spinning (MAS) frequencies than currently available are desirable to improve spectral resolution in NMR and EPR systems. While conventional strategies employ pneumatic spinning limited by fluid dynamics, this paper demonstrates the development of an optical spinning technique in which vacuum quality dictates the maximum achievable spinning frequency. Using optical traps, we levitated a range of micron-sized samples. Under vacuum we achieved optical rotation of a single ∼10 μm diameter particle of vaterite at several mbar up to hundreds of Hz and of 20 μm diameter SiO<sub>2</sub> particles at ≤10<sup>−2</sup> mbar at several kHz. At ambient conditions, we optically levitated γ-irradiated alanine particles of 20–50 μm diameter. Additionally, using a single chip EPR detector operating at 11 GHz, we measured the EPR spectrum for a 30 μm γ-irradiated alanine particle in contact with the chip surface (i.e., without optical levitation) in a single scan lasting 92 s. These observations suggest that a γ-irradiated alanine particle having a diameter in the order of 30 μm is a promising candidate for our aim of demonstrating the first magnetic resonance experiment on optically levitated samples. Furthermore, we discuss strategies, limitations, and the potential of implementing MAS with optical traps for NMR and EPR.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"18 \",\"pages\":\"Article 100145\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000535/pdfft?md5=4e84d82c05ec47dbe1b80aae0b39bbee&pid=1-s2.0-S2666441023000535-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441023000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高核磁共振和电致发光系统的光谱分辨率,我们需要比现有技术更高的魔角旋转(MAS)频率。传统的策略是采用受流体动力学限制的气动纺丝,而本文则展示了一种光学纺丝技术的发展,在这种技术中,真空质量决定了可实现的最大纺丝频率。通过使用光学陷阱,我们悬浮了一系列微米大小的样品。在真空条件下,我们实现了直径为 10 μm 的单个沃特来石颗粒在几毫巴、几百赫兹的条件下的光学旋转,以及直径为 20 μm 的二氧化硅颗粒在≤10-2 毫巴、几千赫兹的条件下的光学旋转。在环境条件下,我们对直径为 20-50 μm 的γ-辐照丙氨酸粒子进行了光学悬浮。此外,我们使用工作频率为 11 GHz 的单芯片 EPR 探测器,在持续 92 秒的单次扫描中,测量了与芯片表面接触(即未进行光学悬浮)的 30 μm γ-irradiated 丙氨酸粒子的 EPR 光谱。这些观察结果表明,直径在 30 μm 左右的 γ-irradiated 丙氨酸粒子很有希望实现我们的目标,即首次在光学悬浮样品上演示磁共振实验。此外,我们还讨论了利用光学陷阱实现 MAS 用于 NMR 和 EPR 的策略、局限性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards optical MAS magnetic resonance using optical traps

Towards optical MAS magnetic resonance using optical traps

Towards optical MAS magnetic resonance using optical traps

Higher magic angle spinning (MAS) frequencies than currently available are desirable to improve spectral resolution in NMR and EPR systems. While conventional strategies employ pneumatic spinning limited by fluid dynamics, this paper demonstrates the development of an optical spinning technique in which vacuum quality dictates the maximum achievable spinning frequency. Using optical traps, we levitated a range of micron-sized samples. Under vacuum we achieved optical rotation of a single ∼10 μm diameter particle of vaterite at several mbar up to hundreds of Hz and of 20 μm diameter SiO2 particles at ≤10−2 mbar at several kHz. At ambient conditions, we optically levitated γ-irradiated alanine particles of 20–50 μm diameter. Additionally, using a single chip EPR detector operating at 11 GHz, we measured the EPR spectrum for a 30 μm γ-irradiated alanine particle in contact with the chip surface (i.e., without optical levitation) in a single scan lasting 92 s. These observations suggest that a γ-irradiated alanine particle having a diameter in the order of 30 μm is a promising candidate for our aim of demonstrating the first magnetic resonance experiment on optically levitated samples. Furthermore, we discuss strategies, limitations, and the potential of implementing MAS with optical traps for NMR and EPR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信