更快的模块化合成

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Journal of the ACM Pub Date : 2023-12-25 DOI:10.1145/3638349
Vincent Neiger, Bruno Salvy, Éric Schost, Gilles Villard
{"title":"更快的模块化合成","authors":"Vincent Neiger, Bruno Salvy, Éric Schost, Gilles Villard","doi":"10.1145/3638349","DOIUrl":null,"url":null,"abstract":"<p>A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by <i>n</i>, the algorithm uses <i>On</i><sup>1.43</sup> field operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require <i>On</i><sup>1.63</sup> field operations in general, and <i>n</i><sup>3/2 + <i>o</i>(1)</sup> field operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix multiplication is used, the new algorithm runs in <i>n</i><sup>5/3 + <i>o</i>(1)</sup> operations, while previous ones run in <i>On</i><sup>2</sup> operations. </p><p>Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"46 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster Modular Composition\",\"authors\":\"Vincent Neiger, Bruno Salvy, Éric Schost, Gilles Villard\",\"doi\":\"10.1145/3638349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by <i>n</i>, the algorithm uses <i>On</i><sup>1.43</sup> field operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require <i>On</i><sup>1.63</sup> field operations in general, and <i>n</i><sup>3/2 + <i>o</i>(1)</sup> field operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix multiplication is used, the new algorithm runs in <i>n</i><sup>5/3 + <i>o</i>(1)</sup> operations, while previous ones run in <i>On</i><sup>2</sup> operations. </p><p>Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638349\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638349","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的拉斯维加斯算法,用于任意域上两个多项式模乘第三个多项式的组合。当这些多项式的度数以 n 为界时,该算法使用 On1.43 场运算,首次突破了指数 3/2 的障碍。之前最快的代数算法是布伦特和孔在 1978 年提出的,一般需要 On1.63 次场运算,而在足够大的特征域上的幂级数的特殊情况下,需要 n3/2 + o(1) 次场运算。如果使用三次矩阵乘法,新算法只需 n5/3 + o(1) 次运算,而以前的算法只需 On2 次运算。我们的方法依赖于计算一个通常很小的代数关系矩阵。随机化的使用可将任意输入减少到这种有利的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster Modular Composition

A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by n, the algorithm uses On1.43 field operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require On1.63 field operations in general, and n3/2 + o(1) field operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix multiplication is used, the new algorithm runs in n5/3 + o(1) operations, while previous ones run in On2 operations.

Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信