Jun Hu;Ruonan Luo;Hongli Dong;Cai Chen;Hongjian Liu
{"title":"具有随机状态延迟的多传感器矩形描述符系统的动态事件触发融合滤波","authors":"Jun Hu;Ruonan Luo;Hongli Dong;Cai Chen;Hongjian Liu","doi":"10.1109/TSIPN.2023.3341410","DOIUrl":null,"url":null,"abstract":"This paper investigates the dynamic event-triggered fusion filtering problem for a class of uncertain multi-sensor rectangular descriptor systems with random state delay. The random state delay is depicted by a Bernoulli distributed random variable. In order to save the communication energy, a dynamic event-triggered mechanism (DETM) is employed to decide whether the measurements are transmitted to the local estimators. Firstly, by introducing the full-order transformation method, the rectangular descriptor systems are converted into the non-descriptor systems with full orders. Secondly, the local filter gains are designed to minimize the upper bounds of filtering error covariances (FECs), where the upper bounds of FECs and the filter gains depend on a group of free positive scalar parameters. To minimize the upper bounds of FECs, the scalar parameters are sought optimally by a numerical method, where the scalars obtained after optimization are called optimal parameters. Subsequently, the fusion filter of the original descriptor system is given by the inverse covariance intersection (ICI) fusion technique. Finally, the effectiveness and advantages of the proposed fusion filtering algorithm are illustrated by providing the experiments with circuit system application.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"9 ","pages":"836-849"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Event-Triggered Fusion Filtering for Multi-Sensor Rectangular Descriptor Systems With Random State Delay\",\"authors\":\"Jun Hu;Ruonan Luo;Hongli Dong;Cai Chen;Hongjian Liu\",\"doi\":\"10.1109/TSIPN.2023.3341410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the dynamic event-triggered fusion filtering problem for a class of uncertain multi-sensor rectangular descriptor systems with random state delay. The random state delay is depicted by a Bernoulli distributed random variable. In order to save the communication energy, a dynamic event-triggered mechanism (DETM) is employed to decide whether the measurements are transmitted to the local estimators. Firstly, by introducing the full-order transformation method, the rectangular descriptor systems are converted into the non-descriptor systems with full orders. Secondly, the local filter gains are designed to minimize the upper bounds of filtering error covariances (FECs), where the upper bounds of FECs and the filter gains depend on a group of free positive scalar parameters. To minimize the upper bounds of FECs, the scalar parameters are sought optimally by a numerical method, where the scalars obtained after optimization are called optimal parameters. Subsequently, the fusion filter of the original descriptor system is given by the inverse covariance intersection (ICI) fusion technique. Finally, the effectiveness and advantages of the proposed fusion filtering algorithm are illustrated by providing the experiments with circuit system application.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"9 \",\"pages\":\"836-849\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10354345/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10354345/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Event-Triggered Fusion Filtering for Multi-Sensor Rectangular Descriptor Systems With Random State Delay
This paper investigates the dynamic event-triggered fusion filtering problem for a class of uncertain multi-sensor rectangular descriptor systems with random state delay. The random state delay is depicted by a Bernoulli distributed random variable. In order to save the communication energy, a dynamic event-triggered mechanism (DETM) is employed to decide whether the measurements are transmitted to the local estimators. Firstly, by introducing the full-order transformation method, the rectangular descriptor systems are converted into the non-descriptor systems with full orders. Secondly, the local filter gains are designed to minimize the upper bounds of filtering error covariances (FECs), where the upper bounds of FECs and the filter gains depend on a group of free positive scalar parameters. To minimize the upper bounds of FECs, the scalar parameters are sought optimally by a numerical method, where the scalars obtained after optimization are called optimal parameters. Subsequently, the fusion filter of the original descriptor system is given by the inverse covariance intersection (ICI) fusion technique. Finally, the effectiveness and advantages of the proposed fusion filtering algorithm are illustrated by providing the experiments with circuit system application.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.