{"title":"可切除肺腺癌与微乳头状成分(MPC)同时表现为混合性磨玻璃不透明结节的临床谱系。","authors":"Ziwen Zhu, Weizhen Jiang, Danhong Zhou, Weidong Zhu, Cheng Chen","doi":"10.3233/CBM-230104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In clinical practice, preoperative identification of mixed ground-glass opacity (mGGO) nodules with micropapillary component (MPC) to facilitate the implementation of individualized therapeutic strategies and avoid unnecessary surgery is increasingly importantOBJECTIVE: This study aimed to build a predictive model based on clinical and radiological variables for the early identification of MPC in lung adenocarcinoma presenting as mGGO nodules.</p><p><strong>Methods: </strong>The enrolled 741 lung adenocarcinoma patients were randomly divided into a training cohort and a validation cohort (3:1 ratio). The pathological specimens and preoperative images of malignant mGGO nodules from the study subjects were retrospectively reviewed. Furthermore, in the training cohort, selected clinical and radiological variables were utilized to construct a predictive model for MPC prediction.</p><p><strong>Results: </strong>The MPC was found in 228 (43.3%) patients in the training cohort and 72 (41.1%) patients in the validation cohort. Based on the predictive nomogram, the air bronchogram was defined as the most dominant independent risk factor for MPC of mGGO nodules, followed by the maximum computed tomography (CT) value (> 200), adjacent to pleura, gender (male), and vacuolar sign. The nomogram demonstrated good discriminative ability with a C-index of 0.783 (95%[CI] 0.744-0.822) in the training cohort and a C-index of 0.799 (95%[CI] 0.732-0.866) in the validation cohort Additionally, by using the bootstrapping method, this predictive model calculated a corrected AUC of 0.774 (95% CI: 0.770-0.779) in the training cohort.</p><p><strong>Conclusions: </strong>This study proposed a predictive model for preoperative identification of MPC in known lung adenocarcinomas presenting as mGGO nodules to facilitate individualized therapy. This nomogram model needs to be further externally validated by subsequent multicenter studies.</p>","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A clinical spectrum of resectable lung adenocarcinoma with micropapillary component (MPC) concurrently presenting as mixed ground-glass opacity nodules.\",\"authors\":\"Ziwen Zhu, Weizhen Jiang, Danhong Zhou, Weidong Zhu, Cheng Chen\",\"doi\":\"10.3233/CBM-230104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In clinical practice, preoperative identification of mixed ground-glass opacity (mGGO) nodules with micropapillary component (MPC) to facilitate the implementation of individualized therapeutic strategies and avoid unnecessary surgery is increasingly importantOBJECTIVE: This study aimed to build a predictive model based on clinical and radiological variables for the early identification of MPC in lung adenocarcinoma presenting as mGGO nodules.</p><p><strong>Methods: </strong>The enrolled 741 lung adenocarcinoma patients were randomly divided into a training cohort and a validation cohort (3:1 ratio). The pathological specimens and preoperative images of malignant mGGO nodules from the study subjects were retrospectively reviewed. Furthermore, in the training cohort, selected clinical and radiological variables were utilized to construct a predictive model for MPC prediction.</p><p><strong>Results: </strong>The MPC was found in 228 (43.3%) patients in the training cohort and 72 (41.1%) patients in the validation cohort. Based on the predictive nomogram, the air bronchogram was defined as the most dominant independent risk factor for MPC of mGGO nodules, followed by the maximum computed tomography (CT) value (> 200), adjacent to pleura, gender (male), and vacuolar sign. The nomogram demonstrated good discriminative ability with a C-index of 0.783 (95%[CI] 0.744-0.822) in the training cohort and a C-index of 0.799 (95%[CI] 0.732-0.866) in the validation cohort Additionally, by using the bootstrapping method, this predictive model calculated a corrected AUC of 0.774 (95% CI: 0.770-0.779) in the training cohort.</p><p><strong>Conclusions: </strong>This study proposed a predictive model for preoperative identification of MPC in known lung adenocarcinomas presenting as mGGO nodules to facilitate individualized therapy. This nomogram model needs to be further externally validated by subsequent multicenter studies.</p>\",\"PeriodicalId\":56320,\"journal\":{\"name\":\"Cancer Biomarkers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biomarkers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CBM-230104\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CBM-230104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A clinical spectrum of resectable lung adenocarcinoma with micropapillary component (MPC) concurrently presenting as mixed ground-glass opacity nodules.
Background: In clinical practice, preoperative identification of mixed ground-glass opacity (mGGO) nodules with micropapillary component (MPC) to facilitate the implementation of individualized therapeutic strategies and avoid unnecessary surgery is increasingly importantOBJECTIVE: This study aimed to build a predictive model based on clinical and radiological variables for the early identification of MPC in lung adenocarcinoma presenting as mGGO nodules.
Methods: The enrolled 741 lung adenocarcinoma patients were randomly divided into a training cohort and a validation cohort (3:1 ratio). The pathological specimens and preoperative images of malignant mGGO nodules from the study subjects were retrospectively reviewed. Furthermore, in the training cohort, selected clinical and radiological variables were utilized to construct a predictive model for MPC prediction.
Results: The MPC was found in 228 (43.3%) patients in the training cohort and 72 (41.1%) patients in the validation cohort. Based on the predictive nomogram, the air bronchogram was defined as the most dominant independent risk factor for MPC of mGGO nodules, followed by the maximum computed tomography (CT) value (> 200), adjacent to pleura, gender (male), and vacuolar sign. The nomogram demonstrated good discriminative ability with a C-index of 0.783 (95%[CI] 0.744-0.822) in the training cohort and a C-index of 0.799 (95%[CI] 0.732-0.866) in the validation cohort Additionally, by using the bootstrapping method, this predictive model calculated a corrected AUC of 0.774 (95% CI: 0.770-0.779) in the training cohort.
Conclusions: This study proposed a predictive model for preoperative identification of MPC in known lung adenocarcinomas presenting as mGGO nodules to facilitate individualized therapy. This nomogram model needs to be further externally validated by subsequent multicenter studies.
期刊介绍:
Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion.
The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.