{"title":"两个丰富的 Poset 多面体","authors":"Soichi Okada, Akiyoshi Tsuchiya","doi":"10.1007/s00026-023-00679-7","DOIUrl":null,"url":null,"abstract":"<div><p>Stanley introduced and studied two lattice polytopes, the order polytope and chain polytope, associated with a finite poset. Recently, Ohsugi and Tsuchiya introduce an enriched version of them, called the enriched order polytope and enriched chain polytope. In this paper, we give a piecewise-linear bijection between these enriched poset polytopes, which is an enriched analogue of Stanley’s transfer map and bijectively proves that they have the same Ehrhart polynomials. Also, we construct explicitly unimodular triangulations of two enriched poset polytopes, which are the order complexes of graded posets.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Enriched Poset Polytopes\",\"authors\":\"Soichi Okada, Akiyoshi Tsuchiya\",\"doi\":\"10.1007/s00026-023-00679-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stanley introduced and studied two lattice polytopes, the order polytope and chain polytope, associated with a finite poset. Recently, Ohsugi and Tsuchiya introduce an enriched version of them, called the enriched order polytope and enriched chain polytope. In this paper, we give a piecewise-linear bijection between these enriched poset polytopes, which is an enriched analogue of Stanley’s transfer map and bijectively proves that they have the same Ehrhart polynomials. Also, we construct explicitly unimodular triangulations of two enriched poset polytopes, which are the order complexes of graded posets.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00679-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00679-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stanley introduced and studied two lattice polytopes, the order polytope and chain polytope, associated with a finite poset. Recently, Ohsugi and Tsuchiya introduce an enriched version of them, called the enriched order polytope and enriched chain polytope. In this paper, we give a piecewise-linear bijection between these enriched poset polytopes, which is an enriched analogue of Stanley’s transfer map and bijectively proves that they have the same Ehrhart polynomials. Also, we construct explicitly unimodular triangulations of two enriched poset polytopes, which are the order complexes of graded posets.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches