Elena Di Bernardino , Thomas Laloë , Cambyse Pakzad
{"title":"带有函数协变量的多变量极端期望值的估计","authors":"Elena Di Bernardino , Thomas Laloë , Cambyse Pakzad","doi":"10.1016/j.jmva.2023.105292","DOIUrl":null,"url":null,"abstract":"<div><p><span>The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate<span><span>, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional </span>quantiles, conditional </span></span>tail index<span><span> and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in </span>probability<span> of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of extreme multivariate expectiles with functional covariates\",\"authors\":\"Elena Di Bernardino , Thomas Laloë , Cambyse Pakzad\",\"doi\":\"10.1016/j.jmva.2023.105292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate<span><span>, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional </span>quantiles, conditional </span></span>tail index<span><span> and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in </span>probability<span> of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.</span></span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001380\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001380","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation of extreme multivariate expectiles with functional covariates
The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional quantiles, conditional tail index and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in probability of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size. The finite-sample performance of our methodology is provided via a numerical illustration of simulated datasets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.