具有最佳自相关性的偶数周期交错四元序列的四元复杂性

Xiaoyan Jing, Zhefeng Xu
{"title":"具有最佳自相关性的偶数周期交错四元序列的四元复杂性","authors":"Xiaoyan Jing, Zhefeng Xu","doi":"10.1007/s12095-023-00690-y","DOIUrl":null,"url":null,"abstract":"<p>Su, Yang, Zhou, and Tang proposed several new classes of optimal autocorrelation interleaved quaternary sequences with period 2<i>n</i> from the twin-prime sequence pairs or GMW sequence pairs. In this paper, we determine the 4-adic complexity of these quaternary sequences by using the correlation function. Our results show that the 4-adic complexity of these quaternary sequences exceeds <span>\\(\\frac{2n-16}{6}\\)</span>, so that they are safe enough to resist the attack of the rational approximation algorithm.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 4-adic complexity of interleaved quaternary sequences of even period with optimal autocorrelation\",\"authors\":\"Xiaoyan Jing, Zhefeng Xu\",\"doi\":\"10.1007/s12095-023-00690-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Su, Yang, Zhou, and Tang proposed several new classes of optimal autocorrelation interleaved quaternary sequences with period 2<i>n</i> from the twin-prime sequence pairs or GMW sequence pairs. In this paper, we determine the 4-adic complexity of these quaternary sequences by using the correlation function. Our results show that the 4-adic complexity of these quaternary sequences exceeds <span>\\\\(\\\\frac{2n-16}{6}\\\\)</span>, so that they are safe enough to resist the attack of the rational approximation algorithm.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-023-00690-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00690-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

苏、杨、周和唐提出了几类新的周期为 2n 的最优自相关交错四元序列,它们来自孪生原点序列对或 GMW 序列对。本文利用相关函数确定了这些四元序列的四元复杂度。我们的结果表明,这些四元序列的四元复杂度超过了(\frac{2n-16}{6}\),因此它们足以安全地抵御有理逼近算法的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 4-adic complexity of interleaved quaternary sequences of even period with optimal autocorrelation

Su, Yang, Zhou, and Tang proposed several new classes of optimal autocorrelation interleaved quaternary sequences with period 2n from the twin-prime sequence pairs or GMW sequence pairs. In this paper, we determine the 4-adic complexity of these quaternary sequences by using the correlation function. Our results show that the 4-adic complexity of these quaternary sequences exceeds \(\frac{2n-16}{6}\), so that they are safe enough to resist the attack of the rational approximation algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信