具有任意数量空间和时间尺度的单调抛物问题的同质化

Pub Date : 2023-12-18 DOI:10.21136/AM.2023.0269-22
Tatiana Danielsson, Liselott Flodén, Pernilla Johnsen, Marianne Olsson Lindberg
{"title":"具有任意数量空间和时间尺度的单调抛物问题的同质化","authors":"Tatiana Danielsson,&nbsp;Liselott Flodén,&nbsp;Pernilla Johnsen,&nbsp;Marianne Olsson Lindberg","doi":"10.21136/AM.2023.0269-22","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter <i>ε</i>. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales\",\"authors\":\"Tatiana Danielsson,&nbsp;Liselott Flodén,&nbsp;Pernilla Johnsen,&nbsp;Marianne Olsson Lindberg\",\"doi\":\"10.21136/AM.2023.0269-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter <i>ε</i>. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0269-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0269-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有任意数量微观尺度的空间和时间单调抛物线问题的一般同质化结果,其中尺度函数不一定是尺度参数ε的幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales

We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter ε. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信