{"title":"具有任意数量空间和时间尺度的单调抛物问题的同质化","authors":"Tatiana Danielsson, Liselott Flodén, Pernilla Johnsen, Marianne Olsson Lindberg","doi":"10.21136/AM.2023.0269-22","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter <i>ε</i>. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales\",\"authors\":\"Tatiana Danielsson, Liselott Flodén, Pernilla Johnsen, Marianne Olsson Lindberg\",\"doi\":\"10.21136/AM.2023.0269-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter <i>ε</i>. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0269-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0269-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter ε. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.