概率超图容器

Pub Date : 2023-12-18 DOI:10.1007/s11856-023-2602-9
Rajko Nenadov
{"title":"概率超图容器","authors":"Rajko Nenadov","doi":"10.1007/s11856-023-2602-9","DOIUrl":null,"url":null,"abstract":"<p>Given a <i>k</i>-uniform hypergraph ℋ and sufficiently large <i>m</i> ≫ <i>m</i><sub>0</sub>(ℋ), we show that an m-element set <i>I</i> ⊆ <i>V</i>(ℋ), chosen uniformly at random, with probability 1 − <i>e−</i><sup><i>ω</i>(<i>m</i>)</sup> is either not independent or is contained in an almost-independent set in ℋ which, crucially, can be constructed from carefully chosen <i>o</i>(<i>m</i>) vertices of <i>I</i>. As a corollary, this implies that if the largest almost-independent set in ℋ is of size <i>o</i>(<i>v</i>(ℋ)) then <i>I</i> itself is an independent set with probability <i>e</i><sup><i>−ω</i>(<i>m</i>)</sup>. More generally, <i>I</i> is very likely to inherit structural properties of almost-independent sets in ℋ.</p><p>The value <i>m</i><sub>0</sub>(ℋ) coincides with that for which Janson’s inequality gives that <i>I</i> is independent with probability at most <span>\\({e^{- \\Theta ({m_0})}}\\)</span>. On the one hand, our result is a significant strengthening of Janson’s inequality in the range <i>m</i> ≫ <i>m</i><sub>0</sub>. On the other hand, it can be seen as a probabilistic variant of hypergraph container theorems, developed by Balogh, Morris and Samotij and, independently, by Saxton and Thomason. While being strictly weaker than the original container theorems in the sense that it does not apply to all independent sets of size <i>m</i>, it is nonetheless sufficient for many applications and admits a short proof using probabilistic ideas.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic hypergraph containers\",\"authors\":\"Rajko Nenadov\",\"doi\":\"10.1007/s11856-023-2602-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a <i>k</i>-uniform hypergraph ℋ and sufficiently large <i>m</i> ≫ <i>m</i><sub>0</sub>(ℋ), we show that an m-element set <i>I</i> ⊆ <i>V</i>(ℋ), chosen uniformly at random, with probability 1 − <i>e−</i><sup><i>ω</i>(<i>m</i>)</sup> is either not independent or is contained in an almost-independent set in ℋ which, crucially, can be constructed from carefully chosen <i>o</i>(<i>m</i>) vertices of <i>I</i>. As a corollary, this implies that if the largest almost-independent set in ℋ is of size <i>o</i>(<i>v</i>(ℋ)) then <i>I</i> itself is an independent set with probability <i>e</i><sup><i>−ω</i>(<i>m</i>)</sup>. More generally, <i>I</i> is very likely to inherit structural properties of almost-independent sets in ℋ.</p><p>The value <i>m</i><sub>0</sub>(ℋ) coincides with that for which Janson’s inequality gives that <i>I</i> is independent with probability at most <span>\\\\({e^{- \\\\Theta ({m_0})}}\\\\)</span>. On the one hand, our result is a significant strengthening of Janson’s inequality in the range <i>m</i> ≫ <i>m</i><sub>0</sub>. On the other hand, it can be seen as a probabilistic variant of hypergraph container theorems, developed by Balogh, Morris and Samotij and, independently, by Saxton and Thomason. While being strictly weaker than the original container theorems in the sense that it does not apply to all independent sets of size <i>m</i>, it is nonetheless sufficient for many applications and admits a short proof using probabilistic ideas.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2602-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2602-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个 k-uniform 超图 ℋ 和足够大的 m ≫ m0(ℋ),我们证明了以 1 - e-ω(m) 的概率均匀随机选择的 m 元素集合 I ⊆ V(ℋ)要么不是独立的,要么包含在 ℋ 中的一个几乎独立的集合中。作为推论,这意味着如果ℋ 中最大的几乎独立集的大小为 o(v(ℋ)),那么 I 本身就是一个独立集,概率为 e-ω(m)。更一般地说,I 很有可能继承了 ℋ 中几乎独立集的结构性质。m0(ℋ) 的值与扬森不等式给出的 I 是独立集的概率至多为 \({e^{-\Theta ({m_0})}}\) 的值重合。一方面,在 m ≫ m0 的范围内,我们的结果大大加强了扬森不等式。另一方面,它可以看作是超图容器定理的概率变体,由巴洛格、莫里斯和萨莫提以及萨克斯顿和托马森独立提出。虽然从严格意义上讲,它比原始的容器定理弱,因为它不适用于所有大小为 m 的独立集合,但它足以满足许多应用的需要,而且可以利用概率论思想进行简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Probabilistic hypergraph containers

Given a k-uniform hypergraph ℋ and sufficiently large mm0(ℋ), we show that an m-element set IV(ℋ), chosen uniformly at random, with probability 1 − e−ω(m) is either not independent or is contained in an almost-independent set in ℋ which, crucially, can be constructed from carefully chosen o(m) vertices of I. As a corollary, this implies that if the largest almost-independent set in ℋ is of size o(v(ℋ)) then I itself is an independent set with probability e−ω(m). More generally, I is very likely to inherit structural properties of almost-independent sets in ℋ.

The value m0(ℋ) coincides with that for which Janson’s inequality gives that I is independent with probability at most \({e^{- \Theta ({m_0})}}\). On the one hand, our result is a significant strengthening of Janson’s inequality in the range mm0. On the other hand, it can be seen as a probabilistic variant of hypergraph container theorems, developed by Balogh, Morris and Samotij and, independently, by Saxton and Thomason. While being strictly weaker than the original container theorems in the sense that it does not apply to all independent sets of size m, it is nonetheless sufficient for many applications and admits a short proof using probabilistic ideas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信