{"title":"关于离散布伦-闵科夫斯基型不等式的计量迁移的评论","authors":"Boaz A. Slomka","doi":"10.1007/s11856-023-2596-3","DOIUrl":null,"url":null,"abstract":"<p>We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory of measure transportation and provides new displacement convexity of entropy type inequalities on the <i>n</i>-dimensional integer lattice.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on discrete Brunn–Minkowski type inequalities via transportation of measure\",\"authors\":\"Boaz A. Slomka\",\"doi\":\"10.1007/s11856-023-2596-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory of measure transportation and provides new displacement convexity of entropy type inequalities on the <i>n</i>-dimensional integer lattice.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2596-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2596-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了离散布伦-闵科夫斯基不等式的另一种证明,该证明最近由 Halikias、Klartag 和作者获得。该证明还隐含了这些不等式更强的加权版本。我们的方法概括了 Gozlan、Roberto、Samson 和 Tetali 在度量运输理论中的观点,并在 n 维整数网格上提供了新的位移凸性熵型不等式。
A remark on discrete Brunn–Minkowski type inequalities via transportation of measure
We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory of measure transportation and provides new displacement convexity of entropy type inequalities on the n-dimensional integer lattice.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.