Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis
{"title":"关于次对称序列的唯一性和丰富性","authors":"Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis","doi":"10.1007/s11856-023-2589-2","DOIUrl":null,"url":null,"abstract":"<p>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(<i>T</i>*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(<i>T</i>*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some <span>\\({\\ell _p}\\)</span> or <i>c</i><sub>0</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness and plentitude of subsymmetric sequences\",\"authors\":\"Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis\",\"doi\":\"10.1007/s11856-023-2589-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(<i>T</i>*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(<i>T</i>*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some <span>\\\\({\\\\ell _p}\\\\)</span> or <i>c</i><sub>0</sub>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2589-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2589-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On uniqueness and plentitude of subsymmetric sequences
We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(T*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(T*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some \({\ell _p}\) or c0.