关于次对称序列的唯一性和丰富性

Pub Date : 2023-12-18 DOI:10.1007/s11856-023-2589-2
Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis
{"title":"关于次对称序列的唯一性和丰富性","authors":"Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis","doi":"10.1007/s11856-023-2589-2","DOIUrl":null,"url":null,"abstract":"<p>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(<i>T</i>*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(<i>T</i>*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some <span>\\({\\ell _p}\\)</span> or <i>c</i><sub>0</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness and plentitude of subsymmetric sequences\",\"authors\":\"Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, Pavlos Motakis\",\"doi\":\"10.1007/s11856-023-2589-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(<i>T</i>*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(<i>T</i>*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some <span>\\\\({\\\\ell _p}\\\\)</span> or <i>c</i><sub>0</sub>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2589-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2589-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了具有次对称基础的空间中次对称基本序列的多样性。我们证明,齐雷尔森的原始巴拿赫空间的次对称化 Su(T*) 提供了第一个已知的具有唯一次对称基本序列的空间的例子,这个空间还是非对称的。与此相反,我们提供了一个具有次对称基础的空间包含非等价次对称基本序列连续体的标准,并将其应用于 Su(T*)*。最后,我们提供了一个次对称序列等价于某个 \({\ell _p}\) 或 c0 的单位向量基础的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On uniqueness and plentitude of subsymmetric sequences

We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su(T*) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su(T*)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some \({\ell _p}\) or c0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信