正则化双zeta值的模块现象

IF 0.8 2区 数学 Q2 MATHEMATICS
Minoru Hirose
{"title":"正则化双zeta值的模块现象","authors":"Minoru Hirose","doi":"10.1007/s11856-023-2587-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate linear relations among regularized motivic iterated integrals on ℙ<sup>1</sup> ∖ {0, 1, ∞} of depth two, which we call regularized motivic double zeta values. Some mysterious connections between motivic multiple zeta values and modular forms are known, e.g., Gangl–Kaneko–Zagier relation for the totally odd double zeta values and Ihara–Takao relation for the depth graded motivic Lie algebra. In this paper, we investigate so-called non-admissible cases and give many new Gangl–Kaneko–Zagier type and Ihara–Takao type relations for regularized motivic double zeta values. Specifically, we construct linear relations among a certain family of regularized motivic double zeta values from odd period polynomials of modular forms for the unique index two congruence subgroup of the full modular group. This gives the first non-trivial example of a construction of the relations among multiple zeta values (or their analogues) from modular forms for a congruence subgroup other than the SL<sub>2</sub>(ℤ).</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular phenomena for regularized double zeta values\",\"authors\":\"Minoru Hirose\",\"doi\":\"10.1007/s11856-023-2587-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate linear relations among regularized motivic iterated integrals on ℙ<sup>1</sup> ∖ {0, 1, ∞} of depth two, which we call regularized motivic double zeta values. Some mysterious connections between motivic multiple zeta values and modular forms are known, e.g., Gangl–Kaneko–Zagier relation for the totally odd double zeta values and Ihara–Takao relation for the depth graded motivic Lie algebra. In this paper, we investigate so-called non-admissible cases and give many new Gangl–Kaneko–Zagier type and Ihara–Takao type relations for regularized motivic double zeta values. Specifically, we construct linear relations among a certain family of regularized motivic double zeta values from odd period polynomials of modular forms for the unique index two congruence subgroup of the full modular group. This gives the first non-trivial example of a construction of the relations among multiple zeta values (or their analogues) from modular forms for a congruence subgroup other than the SL<sub>2</sub>(ℤ).</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2587-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2587-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了深度为二的ℙ1 ∖ {0, 1, ∞}上的正则化动机迭代积分之间的线性关系,我们称之为正则化动机双zeta值。动机多重zeta值和模块形式之间的一些神秘联系是已知的,例如完全奇数双zeta值的 Gangl-Kaneko-Zagier 关系和深度分级动机李代数的 Ihara-Takao 关系。在本文中,我们研究了所谓的非容许情况,并给出了正则化动机双zeta值的许多新的 Gangl-Kaneko-Zagier 型和 Ihara-Takao 型关系。具体地说,我们从模块形式的奇周期多项式中为全模块群的唯一索引二全等子群构建了正则化动机双zeta值的某一族线性关系。这给出了第一个非微观的例子,说明如何为 SL2(ℤ)以外的同余子群,从模态形式构造多重zeta值(或其类似值)之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular phenomena for regularized double zeta values

In this paper, we investigate linear relations among regularized motivic iterated integrals on ℙ1 ∖ {0, 1, ∞} of depth two, which we call regularized motivic double zeta values. Some mysterious connections between motivic multiple zeta values and modular forms are known, e.g., Gangl–Kaneko–Zagier relation for the totally odd double zeta values and Ihara–Takao relation for the depth graded motivic Lie algebra. In this paper, we investigate so-called non-admissible cases and give many new Gangl–Kaneko–Zagier type and Ihara–Takao type relations for regularized motivic double zeta values. Specifically, we construct linear relations among a certain family of regularized motivic double zeta values from odd period polynomials of modular forms for the unique index two congruence subgroup of the full modular group. This gives the first non-trivial example of a construction of the relations among multiple zeta values (or their analogues) from modular forms for a congruence subgroup other than the SL2(ℤ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信