{"title":"霍尔普遍群是自由群的抽象换元子群","authors":"Edgar A. Bering, Daniel Studenmund","doi":"10.1007/s11856-023-2591-8","DOIUrl":null,"url":null,"abstract":"<p>P. Hall constructed a universal countable locally finite group <i>U</i>, determined up to isomorphism by two properties: every finite group <i>C</i> is a subgroup of <i>U</i>, and every embedding of <i>C</i> into <i>U</i> is conjugate in <i>U</i>. Every countable locally finite group is a subgroup of <i>U</i>. We prove that <i>U</i> is a subgroup of the abstract commensurator of a finite-rank nonabelian free group.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hall’s universal group is a subgroup of the abstract commensurator of a free group\",\"authors\":\"Edgar A. Bering, Daniel Studenmund\",\"doi\":\"10.1007/s11856-023-2591-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>P. Hall constructed a universal countable locally finite group <i>U</i>, determined up to isomorphism by two properties: every finite group <i>C</i> is a subgroup of <i>U</i>, and every embedding of <i>C</i> into <i>U</i> is conjugate in <i>U</i>. Every countable locally finite group is a subgroup of <i>U</i>. We prove that <i>U</i> is a subgroup of the abstract commensurator of a finite-rank nonabelian free group.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2591-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2591-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
P.霍尔构造了一个普遍的可数局部有限群 U,由两个性质决定其同构:每个有限群 C 都是 U 的一个子群,每个 C 到 U 的嵌入在 U 中都是共轭的。
Hall’s universal group is a subgroup of the abstract commensurator of a free group
P. Hall constructed a universal countable locally finite group U, determined up to isomorphism by two properties: every finite group C is a subgroup of U, and every embedding of C into U is conjugate in U. Every countable locally finite group is a subgroup of U. We prove that U is a subgroup of the abstract commensurator of a finite-rank nonabelian free group.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.