{"title":"正偶数重的局部谐波马斯形式","authors":"Andreas Mono","doi":"10.1007/s11856-023-2592-7","DOIUrl":null,"url":null,"abstract":"<p>We twist Zagier’s function <i>f</i><sub><i>k,D</i></sub> by a sign function and a genus character. Assuming weight 0 < <i>k</i> ≡ 2 (mod 4), and letting <i>D</i> be a positive non-square discriminant, we prove that the obstruction to modularity caused by the sign function can be corrected obtaining a locally harmonic Maaß form or a local cusp form of the same weight. In addition, we provide an alternative representation of our new function in terms of a twisted trace of modular cycle integrals of a Poincaré series due to Petersson.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally harmonic Maass forms of positive even weight\",\"authors\":\"Andreas Mono\",\"doi\":\"10.1007/s11856-023-2592-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We twist Zagier’s function <i>f</i><sub><i>k,D</i></sub> by a sign function and a genus character. Assuming weight 0 < <i>k</i> ≡ 2 (mod 4), and letting <i>D</i> be a positive non-square discriminant, we prove that the obstruction to modularity caused by the sign function can be corrected obtaining a locally harmonic Maaß form or a local cusp form of the same weight. In addition, we provide an alternative representation of our new function in terms of a twisted trace of modular cycle integrals of a Poincaré series due to Petersson.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2592-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2592-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们用符号函数和种属特征来扭曲扎吉尔函数 fk,D 。假定权重为 0 < k ≡ 2 (mod 4),并让 D 为正的非平方判别式,我们证明了符号函数对模态性的阻碍可以通过局部谐波 Maaß 形式或相同权重的局部尖顶形式得到修正。此外,我们还提供了一种新函数的替代表示法,即彼得森(Petersson)提出的庞加莱数列的模态循环积分的扭曲迹。
Locally harmonic Maass forms of positive even weight
We twist Zagier’s function fk,D by a sign function and a genus character. Assuming weight 0 < k ≡ 2 (mod 4), and letting D be a positive non-square discriminant, we prove that the obstruction to modularity caused by the sign function can be corrected obtaining a locally harmonic Maaß form or a local cusp form of the same weight. In addition, we provide an alternative representation of our new function in terms of a twisted trace of modular cycle integrals of a Poincaré series due to Petersson.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.