{"title":"全域的有效希尔伯特不可还原性定理","authors":"Marcelo Paredes, Román Sasyk","doi":"10.1007/s11856-023-2604-7","DOIUrl":null,"url":null,"abstract":"<p>We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field <i>K</i>. More precisely, we give effective bounds for the number of specializations <span>\\(t \\in {{\\cal O}_K}\\)</span> that do not preserve the irreducibility or the Galois group of a given irreducible polynomial <i>F</i>(<i>T, Y</i>) ∈ <i>K</i>[<i>T, Y</i>]. The bounds are explicit in the height and degree of the polynomial <i>F</i>(<i>T, Y</i>), and are optimal in terms of the size of the parameter <span>\\(t \\in {{\\cal O}_K}\\)</span>. Our proofs deal with the function field and number field cases in a unified way.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Hilbert’s irreducibility theorem for global fields\",\"authors\":\"Marcelo Paredes, Román Sasyk\",\"doi\":\"10.1007/s11856-023-2604-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field <i>K</i>. More precisely, we give effective bounds for the number of specializations <span>\\\\(t \\\\in {{\\\\cal O}_K}\\\\)</span> that do not preserve the irreducibility or the Galois group of a given irreducible polynomial <i>F</i>(<i>T, Y</i>) ∈ <i>K</i>[<i>T, Y</i>]. The bounds are explicit in the height and degree of the polynomial <i>F</i>(<i>T, Y</i>), and are optimal in terms of the size of the parameter <span>\\\\(t \\\\in {{\\\\cal O}_K}\\\\)</span>. Our proofs deal with the function field and number field cases in a unified way.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2604-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2604-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Effective Hilbert’s irreducibility theorem for global fields
We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field K. More precisely, we give effective bounds for the number of specializations \(t \in {{\cal O}_K}\) that do not preserve the irreducibility or the Galois group of a given irreducible polynomial F(T, Y) ∈ K[T, Y]. The bounds are explicit in the height and degree of the polynomial F(T, Y), and are optimal in terms of the size of the parameter \(t \in {{\cal O}_K}\). Our proofs deal with the function field and number field cases in a unified way.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.