超椭圆双曲面的短同调基

IF 0.8 2区 数学 Q2 MATHEMATICS
Peter Buser, Eran Makover, Bjoern Muetzel
{"title":"超椭圆双曲面的短同调基","authors":"Peter Buser, Eran Makover, Bjoern Muetzel","doi":"10.1007/s11856-023-2600-y","DOIUrl":null,"url":null,"abstract":"<p>Given a hyperelliptic hyperbolic surface <i>S</i> of genus <i>g</i> ≥ 2, we find bounds on the lengths of homologically independent loops on <i>S</i>. As a consequence, we show that for any λ ∈ (0, 1) there exists a constant <i>N</i>(λ) such that every such surface has at least <span>\\(\\left\\lceil {\\lambda \\cdot {2 \\over 3}g} \\right\\rceil \\)</span> homologically independent loops of length at most <i>N</i>(λ), extending the result in [Mu] and [BPS]. This allows us to extend the constant upper bound obtained in [Mu] on the minimal length of non-zero period lattice vectors of hyperelliptic Riemann surfaces to almost <span>\\({2 \\over 3}g\\)</span> linearly independent vectors.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short homology bases for hyperelliptic hyperbolic surfaces\",\"authors\":\"Peter Buser, Eran Makover, Bjoern Muetzel\",\"doi\":\"10.1007/s11856-023-2600-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a hyperelliptic hyperbolic surface <i>S</i> of genus <i>g</i> ≥ 2, we find bounds on the lengths of homologically independent loops on <i>S</i>. As a consequence, we show that for any λ ∈ (0, 1) there exists a constant <i>N</i>(λ) such that every such surface has at least <span>\\\\(\\\\left\\\\lceil {\\\\lambda \\\\cdot {2 \\\\over 3}g} \\\\right\\\\rceil \\\\)</span> homologically independent loops of length at most <i>N</i>(λ), extending the result in [Mu] and [BPS]. This allows us to extend the constant upper bound obtained in [Mu] on the minimal length of non-zero period lattice vectors of hyperelliptic Riemann surfaces to almost <span>\\\\({2 \\\\over 3}g\\\\)</span> linearly independent vectors.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2600-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2600-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个属g≥2的超椭圆双曲面S,我们找到了S上同源独立环长度的边界。因此,我们证明了对于任意 λ ∈ (0, 1) 存在一个常数 N(λ),使得每个这样的曲面至少有长度为 N(λ)的同源独立环,这扩展了 [Mu] 和 [BPS] 中的结果。这使得我们可以将 [Mu] 中得到的关于超椭圆黎曼曲面非零周期晶格矢量最小长度的常数上界扩展到几乎 \({2\over 3}g\) 线性独立矢量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short homology bases for hyperelliptic hyperbolic surfaces

Given a hyperelliptic hyperbolic surface S of genus g ≥ 2, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any λ ∈ (0, 1) there exists a constant N(λ) such that every such surface has at least \(\left\lceil {\lambda \cdot {2 \over 3}g} \right\rceil \) homologically independent loops of length at most N(λ), extending the result in [Mu] and [BPS]. This allows us to extend the constant upper bound obtained in [Mu] on the minimal length of non-zero period lattice vectors of hyperelliptic Riemann surfaces to almost \({2 \over 3}g\) linearly independent vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信