简化具有一般系数的矩阵微分方程

IF 0.8 2区 数学 Q2 MATHEMATICS
{"title":"简化具有一般系数的矩阵微分方程","authors":"","doi":"10.1007/s11856-023-2599-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We show that the <em>n × n</em> matrix differential equation <em>δ</em>(<em>Y</em>) = <em>AY</em> with <em>n</em><sup>2</sup> general coefficients cannot be simplified to an equation in less than <em>n</em> parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of <em>A</em> and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard–Vessiot extensions.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplifying matrix differential equations with general coefficients\",\"authors\":\"\",\"doi\":\"10.1007/s11856-023-2599-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We show that the <em>n × n</em> matrix differential equation <em>δ</em>(<em>Y</em>) = <em>AY</em> with <em>n</em><sup>2</sup> general coefficients cannot be simplified to an equation in less than <em>n</em> parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of <em>A</em> and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard–Vessiot extensions.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2599-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2599-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们证明了具有 n2 个一般系数的 n × n 矩阵微分方程 δ(Y) = AY 无法通过使用其系数为 A 的矩阵项中的有理函数及其导数的规整变换简化为小于 n 个参数的方程。我们的证明使用了微分伽罗瓦理论和本质维度的微分类似方法。我们还限定了描述某些一般皮卡-维西奥扩展所需的最小参数数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplifying matrix differential equations with general coefficients

Abstract

We show that the n × n matrix differential equation δ(Y) = AY with n2 general coefficients cannot be simplified to an equation in less than n parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of A and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard–Vessiot extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信