临界带内最长的上升路径

IF 0.8 2区 数学 Q2 MATHEMATICS
Partha S. Dey, Mathew Joseph, Ron Peled
{"title":"临界带内最长的上升路径","authors":"Partha S. Dey, Mathew Joseph, Ron Peled","doi":"10.1007/s11856-023-2603-8","DOIUrl":null,"url":null,"abstract":"<p>A Poisson point process of unit intensity is placed in the square [0, <i>n</i>]<sup>2</sup>. An increasing path is a curve connecting (0, 0) with (<i>n, n</i>) which is non-decreasing in each coordinate. Its length is the number of points of the Poisson process which it passes through. Baik, Deift and Johansson proved that the maximal length of an increasing path has expectation 2<i>n</i> − <i>n</i><sup>1/3</sup>(<i>c</i><sub>1</sub> + <i>o</i>(1)), variance <i>n</i><sup>2/3</sup>(<i>c</i><sub>2</sub> + <i>o</i>(1)) for some <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub> &gt; 0 and that it converges to the Tracy–Widom distribution after suitable scaling. Johansson further showed that all maximal paths have a displacement of <span>\\({n^{{2 \\over 3} + o(1)}}\\)</span> from the diagonal with probability tending to one as <i>n</i> → ∞. Here we prove that the maximal length of an increasing path restricted to lie within a strip of width <i>n</i><sup><i>γ</i></sup>, <span>\\(\\gamma &lt; {2 \\over 3}\\)</span>, around the diagonal has expectation 2<i>n</i> − <i>n</i><sup>1−<i>γ</i>+<i>o</i>(1)</sup>, variance <span>\\({n^{1 - {\\gamma \\over 2} + o(1)}}\\)</span> and that it converges to the Gaussian distribution after suitable scaling.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longest increasing path within the critical strip\",\"authors\":\"Partha S. Dey, Mathew Joseph, Ron Peled\",\"doi\":\"10.1007/s11856-023-2603-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Poisson point process of unit intensity is placed in the square [0, <i>n</i>]<sup>2</sup>. An increasing path is a curve connecting (0, 0) with (<i>n, n</i>) which is non-decreasing in each coordinate. Its length is the number of points of the Poisson process which it passes through. Baik, Deift and Johansson proved that the maximal length of an increasing path has expectation 2<i>n</i> − <i>n</i><sup>1/3</sup>(<i>c</i><sub>1</sub> + <i>o</i>(1)), variance <i>n</i><sup>2/3</sup>(<i>c</i><sub>2</sub> + <i>o</i>(1)) for some <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub> &gt; 0 and that it converges to the Tracy–Widom distribution after suitable scaling. Johansson further showed that all maximal paths have a displacement of <span>\\\\({n^{{2 \\\\over 3} + o(1)}}\\\\)</span> from the diagonal with probability tending to one as <i>n</i> → ∞. Here we prove that the maximal length of an increasing path restricted to lie within a strip of width <i>n</i><sup><i>γ</i></sup>, <span>\\\\(\\\\gamma &lt; {2 \\\\over 3}\\\\)</span>, around the diagonal has expectation 2<i>n</i> − <i>n</i><sup>1−<i>γ</i>+<i>o</i>(1)</sup>, variance <span>\\\\({n^{1 - {\\\\gamma \\\\over 2} + o(1)}}\\\\)</span> and that it converges to the Gaussian distribution after suitable scaling.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2603-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2603-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

将单位强度的泊松点过程置于正方形 [0, n]2 中。递增路径是连接(0,0)和(n,n)的曲线,在每个坐标上都不递减。它的长度就是它所经过的泊松过程的点数。Baik、Deift 和 Johansson 证明,对于某些 c1、c2 > 0,递增路径的最大长度具有期望 2n - n1/3(c1 + o(1)),方差 n2/3(c2 + o(1)),并且在适当缩放后收敛于 Tracy-Widom 分布。约翰森进一步证明,当 n → ∞ 时,所有最大路径的对角线位移概率为 \({n^{2\over3}+o(1)}}\)。在这里,我们证明了限制在宽度为 nγ 的条带内、围绕对角线的递增路径的最大长度具有期望 2n - n1-γ+o(1), 方差 \({n^{1 - {\gamma\over 2} + o(1)}}\) 并且在适当的缩放之后它收敛于高斯分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longest increasing path within the critical strip

A Poisson point process of unit intensity is placed in the square [0, n]2. An increasing path is a curve connecting (0, 0) with (n, n) which is non-decreasing in each coordinate. Its length is the number of points of the Poisson process which it passes through. Baik, Deift and Johansson proved that the maximal length of an increasing path has expectation 2nn1/3(c1 + o(1)), variance n2/3(c2 + o(1)) for some c1, c2 > 0 and that it converges to the Tracy–Widom distribution after suitable scaling. Johansson further showed that all maximal paths have a displacement of \({n^{{2 \over 3} + o(1)}}\) from the diagonal with probability tending to one as n → ∞. Here we prove that the maximal length of an increasing path restricted to lie within a strip of width nγ, \(\gamma < {2 \over 3}\), around the diagonal has expectation 2nn1−γ+o(1), variance \({n^{1 - {\gamma \over 2} + o(1)}}\) and that it converges to the Gaussian distribution after suitable scaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信