论各向同性三元二次型的解析理论

William Duke, Rainer Schulze-Pillot
{"title":"论各向同性三元二次型的解析理论","authors":"William Duke, Rainer Schulze-Pillot","doi":"10.1007/s11854-023-0324-x","DOIUrl":null,"url":null,"abstract":"<p>A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the analytic theory of isotropic ternary quadratic forms\",\"authors\":\"William Duke, Rainer Schulze-Pillot\",\"doi\":\"10.1007/s11854-023-0324-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0324-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0324-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了关于积分三元二次型零的原始表示的一个新的局部-全局结果。通过对克内瑟(Kneser)的一个结果(在附录中给出)的扩展,它产生了对哈塞原理的定量补充,即形式属的原始零点的自变轨道数。证明中的一个要素是关于给定形式在这种轨道中的零点计数的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analytic theory of isotropic ternary quadratic forms

A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信