{"title":"论各向同性三元二次型的解析理论","authors":"William Duke, Rainer Schulze-Pillot","doi":"10.1007/s11854-023-0324-x","DOIUrl":null,"url":null,"abstract":"<p>A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the analytic theory of isotropic ternary quadratic forms\",\"authors\":\"William Duke, Rainer Schulze-Pillot\",\"doi\":\"10.1007/s11854-023-0324-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0324-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0324-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the analytic theory of isotropic ternary quadratic forms
A new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.