随机双曲面上拉普拉斯的确定性

Frédéric Naud
{"title":"随机双曲面上拉普拉斯的确定性","authors":"Frédéric Naud","doi":"10.1007/s11854-023-0334-8","DOIUrl":null,"url":null,"abstract":"<p>For sequences (<i>X</i><sub><i>j</i></sub>) of random closed hyperbolic surfaces with volume Vol(<i>X</i><sub><i>j</i></sub>) tending to infinity, we prove that there exists a universal constant <i>E</i> &gt; 0 such that for all <i>ϵ</i> &gt; 0, the regularized determinant of the Laplacian satisfies </p><span>$${{\\log \\det ({\\Delta _{{X_j}}})} \\over {{\\rm{Vol}}({X_j})}} \\in [E -\\epsilon ,E +\\epsilon]$$</span><p> with high probability as <i>j</i> → +⋡. This result holds for various models of random surfaces, including the Weil–Petersson model.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinants of Laplacians on random hyperbolic surfaces\",\"authors\":\"Frédéric Naud\",\"doi\":\"10.1007/s11854-023-0334-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For sequences (<i>X</i><sub><i>j</i></sub>) of random closed hyperbolic surfaces with volume Vol(<i>X</i><sub><i>j</i></sub>) tending to infinity, we prove that there exists a universal constant <i>E</i> &gt; 0 such that for all <i>ϵ</i> &gt; 0, the regularized determinant of the Laplacian satisfies </p><span>$${{\\\\log \\\\det ({\\\\Delta _{{X_j}}})} \\\\over {{\\\\rm{Vol}}({X_j})}} \\\\in [E -\\\\epsilon ,E +\\\\epsilon]$$</span><p> with high probability as <i>j</i> → +⋡. This result holds for various models of random surfaces, including the Weil–Petersson model.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0334-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0334-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于体积 Vol(Xj) 趋于无穷大的随机封闭双曲面序列 (Xj),我们证明存在一个通用常数 E >0,使得对于所有 ϵ >0,正则化的拉普拉斯行列式满足 $${{log \det ({\Delta _{{X_j}})}} 。\over {{\rm{Vol}}({X_j})}}\当 j → +⋡ 时,在 [E -\epsilon ,E +\epsilon]$$ 中以很高的概率出现。这一结果适用于各种随机曲面模型,包括魏尔-彼得森模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinants of Laplacians on random hyperbolic surfaces

For sequences (Xj) of random closed hyperbolic surfaces with volume Vol(Xj) tending to infinity, we prove that there exists a universal constant E > 0 such that for all ϵ > 0, the regularized determinant of the Laplacian satisfies

$${{\log \det ({\Delta _{{X_j}}})} \over {{\rm{Vol}}({X_j})}} \in [E -\epsilon ,E +\epsilon]$$

with high probability as j → +⋡. This result holds for various models of random surfaces, including the Weil–Petersson model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信