论广义费克特多项式的算术

Pub Date : 2023-12-21 DOI:10.1080/10586458.2023.2293283
Ján Mináč, Tung T. Nguyen, Nguyễn Duy Tân
{"title":"论广义费克特多项式的算术","authors":"Ján Mináč, Tung T. Nguyen, Nguyễn Duy Tân","doi":"10.1080/10586458.2023.2293283","DOIUrl":null,"url":null,"abstract":"For each prime number p one can associate a Fekete polynomial with coefficients–1 or 1 except the constant term, which is 0. These are classical polynomials that have been studied extensively in th...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Arithmetic of Generalized Fekete Polynomials\",\"authors\":\"Ján Mináč, Tung T. Nguyen, Nguyễn Duy Tân\",\"doi\":\"10.1080/10586458.2023.2293283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each prime number p one can associate a Fekete polynomial with coefficients–1 or 1 except the constant term, which is 0. These are classical polynomials that have been studied extensively in th...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2023.2293283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2293283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每个质数 p,我们都可以联想到一个系数为 1 或 1 的 Fekete 多项式,但常数项除外,因为常数项为 0。 这些都是经典的多项式,在数学界已被广泛研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Arithmetic of Generalized Fekete Polynomials
For each prime number p one can associate a Fekete polynomial with coefficients–1 or 1 except the constant term, which is 0. These are classical polynomials that have been studied extensively in th...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信