有限维李代数物理系统的几何保全数值方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
L. Blanco, F. Jiménez, J. de Lucas, C. Sardón
{"title":"有限维李代数物理系统的几何保全数值方法","authors":"L. Blanco, F. Jiménez, J. de Lucas, C. Sardón","doi":"10.1007/s00332-023-10000-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"80 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry-Preserving Numerical Methods for Physical Systems with Finite-Dimensional Lie Algebras\",\"authors\":\"L. Blanco, F. Jiménez, J. de Lucas, C. Sardón\",\"doi\":\"10.1007/s00332-023-10000-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-10000-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10000-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一种几何积分器,用于对列系的流进行数值逼近。其关键在于一个新颖的程序,它通过一个李群作用将一个李群上的李系与一个一般流形上的李系内在地联系在一起,然后通过一个李群上的李系的解生成流形上的李系的离散解。将一个 Lie 系统集成到一个 Lie 群上的一个主要结果是,人们能够同时求解流形上所有相关的 Lie 系统,并且 Lie 群上的 Lie 系统可以通过正则形式的一阶线性均相常微分方程(ODE)系统来描述。这带来了很多好处,因为求解线性 ODE 系统的数值代价较低。具体地说,我们使用了两组旨在保留李群几何结构的数值方案:第一组基于马格努斯展开,而第二组则基于 Runge-Kutta-Munthe-Kaas (RKMK) 方法。此外,由于上述作用关系到李系演化的李群和流形,由此产生的积分器保留了后者的任何几何结构。我们比较了这两种方法对具有几何不变式的李系的影响,特别是对曲线空间上的一类李系的影响。我们还说明了我们的方法在描述长期行为和微分方程解(其几何特征在很大程度上取决于初始条件)方面的优越性。如前所述,我们的目标是证明,与非几何数值方法相比,我们提出的方法能非常忠实地保留所有几何不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry-Preserving Numerical Methods for Physical Systems with Finite-Dimensional Lie Algebras

Abstract

We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信