{"title":"有限维李代数物理系统的几何保全数值方法","authors":"L. Blanco, F. Jiménez, J. de Lucas, C. Sardón","doi":"10.1007/s00332-023-10000-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"80 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry-Preserving Numerical Methods for Physical Systems with Finite-Dimensional Lie Algebras\",\"authors\":\"L. Blanco, F. Jiménez, J. de Lucas, C. Sardón\",\"doi\":\"10.1007/s00332-023-10000-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-10000-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10000-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometry-Preserving Numerical Methods for Physical Systems with Finite-Dimensional Lie Algebras
Abstract
We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one is based on the Magnus expansion, whereas the second is based on Runge–Kutta–Munthe–Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with non-geometric numerical methods.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.