图形的弱动态着色 超越平面性

Pub Date : 2023-12-23 DOI:10.1007/s00373-023-02733-w
Weichan Liu, Guiying Yan
{"title":"图形的弱动态着色 超越平面性","authors":"Weichan Liu, Guiying Yan","doi":"10.1007/s00373-023-02733-w","DOIUrl":null,"url":null,"abstract":"<p>A weak-dynamic coloring of a graph is a vertex coloring (not necessarily proper) in such a way that each vertex of degree at least two sees at least two colors in its neighborhood. It is proved that the weak-dynamic chromatic number of the class of <i>k</i>-planar graphs (resp. IC-planar graphs) is equal to (resp. at most) the chromatic number of the class of 2<i>k</i>-planar graphs (resp. 1-planar graphs), and therefore every IC-planar graph has a weak-dynamic 6-coloring (being sharp) and every 1-planar graph has a weak-dynamic 9-coloring. Moreover, we conclude that the well-known Four Color Theorem is equivalent to the proposition that every planar graph has a weak-dynamic 4-coloring, or even that every <span>\\(C_4\\)</span>-free bipartite planar graph has a weak-dynamic 4-coloring. It is also showed that deciding if a given graph has a weak-dynamic <i>k</i>-coloring is NP-complete for every integer <span>\\(k\\ge 3\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak-Dynamic Coloring of Graphs Beyond-Planarity\",\"authors\":\"Weichan Liu, Guiying Yan\",\"doi\":\"10.1007/s00373-023-02733-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A weak-dynamic coloring of a graph is a vertex coloring (not necessarily proper) in such a way that each vertex of degree at least two sees at least two colors in its neighborhood. It is proved that the weak-dynamic chromatic number of the class of <i>k</i>-planar graphs (resp. IC-planar graphs) is equal to (resp. at most) the chromatic number of the class of 2<i>k</i>-planar graphs (resp. 1-planar graphs), and therefore every IC-planar graph has a weak-dynamic 6-coloring (being sharp) and every 1-planar graph has a weak-dynamic 9-coloring. Moreover, we conclude that the well-known Four Color Theorem is equivalent to the proposition that every planar graph has a weak-dynamic 4-coloring, or even that every <span>\\\\(C_4\\\\)</span>-free bipartite planar graph has a weak-dynamic 4-coloring. It is also showed that deciding if a given graph has a weak-dynamic <i>k</i>-coloring is NP-complete for every integer <span>\\\\(k\\\\ge 3\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02733-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02733-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图的弱动态着色是一种顶点着色(不一定是适当的),其方式是让每个至少有两个度的顶点在其邻域中看到至少两种颜色。我们证明了 k-planar 图(或 IC-planar 图)类的弱动态色度数等于(或最多等于)2k-planar 图(或 1-planar 图)类的色度数,因此每个 IC-planar 图都有一个弱动态 6 色(尖锐),每个 1-planar 图都有一个弱动态 9 色。此外,我们还得出结论,众所周知的四色定理等价于这样一个命题:每个平面图都有一个弱动态 4 色,甚至每个不含 \(C_4\) 的二元平面图都有一个弱动态 4 色。研究还表明,对于每一个整数 \(k\ge 3\) 来说,判断一个给定的图是否具有弱动态 k-着色是 NP-完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weak-Dynamic Coloring of Graphs Beyond-Planarity

A weak-dynamic coloring of a graph is a vertex coloring (not necessarily proper) in such a way that each vertex of degree at least two sees at least two colors in its neighborhood. It is proved that the weak-dynamic chromatic number of the class of k-planar graphs (resp. IC-planar graphs) is equal to (resp. at most) the chromatic number of the class of 2k-planar graphs (resp. 1-planar graphs), and therefore every IC-planar graph has a weak-dynamic 6-coloring (being sharp) and every 1-planar graph has a weak-dynamic 9-coloring. Moreover, we conclude that the well-known Four Color Theorem is equivalent to the proposition that every planar graph has a weak-dynamic 4-coloring, or even that every \(C_4\)-free bipartite planar graph has a weak-dynamic 4-coloring. It is also showed that deciding if a given graph has a weak-dynamic k-coloring is NP-complete for every integer \(k\ge 3\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信