{"title":"集合差分系统的一些新构造","authors":"Shuyu Shen, Jingjun Bao","doi":"10.1007/s00373-023-02729-6","DOIUrl":null,"url":null,"abstract":"<p>Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Constructions of Difference Systems of Sets\",\"authors\":\"Shuyu Shen, Jingjun Bao\",\"doi\":\"10.1007/s00373-023-02729-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02729-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02729-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some New Constructions of Difference Systems of Sets
Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.