集合差分系统的一些新构造

IF 0.6 4区 数学 Q3 MATHEMATICS
Shuyu Shen, Jingjun Bao
{"title":"集合差分系统的一些新构造","authors":"Shuyu Shen, Jingjun Bao","doi":"10.1007/s00373-023-02729-6","DOIUrl":null,"url":null,"abstract":"<p>Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Constructions of Difference Systems of Sets\",\"authors\":\"Shuyu Shen, Jingjun Bao\",\"doi\":\"10.1007/s00373-023-02729-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02729-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02729-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

差集系统(DSSs)是列文什金提出的组合结构,是循环差集的广义化,与代码同步有关。在本文中,我们描述了从有限射影几何中直接构造最优 DSS 的四种方法,并通过扩展已知构造提出了 DSS 的递归构造。因此,我们可以得到新的无限最优 DSS 族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some New Constructions of Difference Systems of Sets

Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信