分叉马尔可夫链中过渡密度的核估计

Pub Date : 2023-12-20 DOI:10.1016/j.jspi.2023.106138
S. Valère Bitseki Penda
{"title":"分叉马尔可夫链中过渡密度的核估计","authors":"S. Valère Bitseki Penda","doi":"10.1016/j.jspi.2023.106138","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the kernel estimators<span><span> of the transition density of bifurcating Markov chains. Under some ergodic and </span>regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the </span></span>numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel estimation of the transition density in bifurcating Markov chains\",\"authors\":\"S. Valère Bitseki Penda\",\"doi\":\"10.1016/j.jspi.2023.106138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study the kernel estimators<span><span> of the transition density of bifurcating Markov chains. Under some ergodic and </span>regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the </span></span>numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823001076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了分叉马尔可夫链过渡密度的核估计量。在一些遍历和正则特性下,我们证明了这些估计值是一致和渐近正态的。接下来,在数值研究中,我们提出了两种数据驱动的带宽参数选择方法。这些方法基于所谓的双带宽方法,适用于最小二乘交叉验证法和经验法则法的分叉马尔可夫链。最后,我们提供了一个使用真实数据的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kernel estimation of the transition density in bifurcating Markov chains

We study the kernel estimators of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信