矢量相关配置和 plabic 图形

Niklas Affolter, Max Glick, Pavlo Pylyavskyy, Sanjay Ramassamy
{"title":"矢量相关配置和 plabic 图形","authors":"Niklas Affolter, Max Glick, Pavlo Pylyavskyy, Sanjay Ramassamy","doi":"10.1007/s00029-023-00898-z","DOIUrl":null,"url":null,"abstract":"<p>We study a simple geometric model for local transformations of bipartite graphs. The state consists of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical systems including the pentagram map, <i>Q</i>-nets, and discrete Darboux maps. On the other hand, for plabic graphs we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the fact that Postnikov’s boundary measurement map is invertible. In all cases there is a cluster algebra operating in the background, resolving the open question for <i>Q</i>-nets of whether such a structure exists.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector-relation configurations and plabic graphs\",\"authors\":\"Niklas Affolter, Max Glick, Pavlo Pylyavskyy, Sanjay Ramassamy\",\"doi\":\"10.1007/s00029-023-00898-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a simple geometric model for local transformations of bipartite graphs. The state consists of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical systems including the pentagram map, <i>Q</i>-nets, and discrete Darboux maps. On the other hand, for plabic graphs we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the fact that Postnikov’s boundary measurement map is invertible. In all cases there is a cluster algebra operating in the background, resolving the open question for <i>Q</i>-nets of whether such a structure exists.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00898-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00898-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是一个简单的几何模型,用于二叉图的局部变换。状态包括在每个白色顶点选择一个向量,使每个黑色顶点相邻的向量满足线性关系。不同图形选择的演化过程与许多著名的动力学系统不谋而合,包括五角星图、Q 网和离散达尔布图。另一方面,对于plabic图,我们证明了配置从边界到内部的唯一可扩展性,这优雅地说明了波斯特尼科夫边界测量图是可逆的这一事实。在所有情况下,都有一个簇代数在背景中运行,解决了 Q 网是否存在这种结构的悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vector-relation configurations and plabic graphs

Vector-relation configurations and plabic graphs

We study a simple geometric model for local transformations of bipartite graphs. The state consists of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical systems including the pentagram map, Q-nets, and discrete Darboux maps. On the other hand, for plabic graphs we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the fact that Postnikov’s boundary measurement map is invertible. In all cases there is a cluster algebra operating in the background, resolving the open question for Q-nets of whether such a structure exists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信