立方非线性薛定谔系统的新矢量解

Lipeng Duan, Xiao Luo, Maoding Zhen
{"title":"立方非线性薛定谔系统的新矢量解","authors":"Lipeng Duan, Xiao Luo, Maoding Zhen","doi":"10.1007/s11854-023-0315-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct a family of new solutions for the following nonlinear Schrödinger system: </p><span>$$\\left\\{{\\matrix{{- \\Delta u + P(y)u = \\mu {u^3} + \\beta u{\\upsilon ^2},} &amp; {u &gt; 0,\\,\\,{\\rm{in}}\\,{\\mathbb{R}^3},} \\cr {- \\Delta \\upsilon + Q(y)\\upsilon = v{\\upsilon ^3} + \\beta {u^2}\\upsilon ,} &amp; {\\upsilon &gt; 0,\\,\\,{\\rm{in}}\\,{\\mathbb{R}^3},} \\cr}} \\right.$$</span><p> where <i>P</i>(<i>y</i>), <i>Q</i>(<i>y</i>) are positive radial potentials, <i>μ &gt; 0, v &gt; 0</i> and <span>\\(\\beta \\in \\mathbb{R}\\)</span>. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schrödinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials <i>P</i>(<i>y</i>) and <i>Q</i>(<i>y</i>) decay in different rates.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New vector solutions for the cubic nonlinear schrödinger system\",\"authors\":\"Lipeng Duan, Xiao Luo, Maoding Zhen\",\"doi\":\"10.1007/s11854-023-0315-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct a family of new solutions for the following nonlinear Schrödinger system: </p><span>$$\\\\left\\\\{{\\\\matrix{{- \\\\Delta u + P(y)u = \\\\mu {u^3} + \\\\beta u{\\\\upsilon ^2},} &amp; {u &gt; 0,\\\\,\\\\,{\\\\rm{in}}\\\\,{\\\\mathbb{R}^3},} \\\\cr {- \\\\Delta \\\\upsilon + Q(y)\\\\upsilon = v{\\\\upsilon ^3} + \\\\beta {u^2}\\\\upsilon ,} &amp; {\\\\upsilon &gt; 0,\\\\,\\\\,{\\\\rm{in}}\\\\,{\\\\mathbb{R}^3},} \\\\cr}} \\\\right.$$</span><p> where <i>P</i>(<i>y</i>), <i>Q</i>(<i>y</i>) are positive radial potentials, <i>μ &gt; 0, v &gt; 0</i> and <span>\\\\(\\\\beta \\\\in \\\\mathbb{R}\\\\)</span>. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schrödinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials <i>P</i>(<i>y</i>) and <i>Q</i>(<i>y</i>) decay in different rates.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0315-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0315-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为下面的非线性薛定谔系统构建了一个新解族: $$\left\{{\matrix{{- \Delta u + P(y)u = \mu {u^3},} & {u > 0,\,\,{\mathbb{in}}\,{\mathbb{in}}\,{\mathbb{in}}.+ \beta u{upsilon ^2},} & {u > 0,\,\,{rm{in}}\,{\mathbb{R}^3},} \cr {-\Delta \upsilon + Q(y)\upsilon = v{upsilon ^3}+ β {u^2}\upsilon ,} & {\upsilon > 0,\,{rm{in}}\,{mathbb{R}^3},}\cr}}}。\right.$$ 其中 P(y), Q(y) 是正的径向势,μ > 0, v > 0 和 \(\beta\in \mathbb{R}\)。受 M. Medina 和 M. Musso (J. Math. Pures Appl. 2021) 中 Yamabe 方程的整个有限能量符号变化解的加倍构造的启发,通过使用另一种类型的构件,这些构件与 S. Peng 和 Z.-Q.王志强(Arch. Ration. Mech. Anal.我们的结果扩展了 S. Peng 和 Z.-Q. Wang(Arch.尤其是在分离情况下,当电势 P(y) 和 Q(y) 以不同速率衰减时,我们很好地补充了之前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New vector solutions for the cubic nonlinear schrödinger system

In this paper, we construct a family of new solutions for the following nonlinear Schrödinger system:

$$\left\{{\matrix{{- \Delta u + P(y)u = \mu {u^3} + \beta u{\upsilon ^2},} & {u > 0,\,\,{\rm{in}}\,{\mathbb{R}^3},} \cr {- \Delta \upsilon + Q(y)\upsilon = v{\upsilon ^3} + \beta {u^2}\upsilon ,} & {\upsilon > 0,\,\,{\rm{in}}\,{\mathbb{R}^3},} \cr}} \right.$$

where P(y), Q(y) are positive radial potentials, μ > 0, v > 0 and \(\beta \in \mathbb{R}\). Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schrödinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials P(y) and Q(y) decay in different rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信