{"title":"公制 σ 框架的均匀局部连通性和完备性","authors":"I. Naidoo","doi":"10.1515/ms-2023-0100","DOIUrl":null,"url":null,"abstract":"ABSTRACT We extend the notion of local connectedness and uniform local connectedness to the category MσFrm of metric σ-frames. We provide the construction of the uniformly locally connected reflection of a locally connected metric σ-frame. We also discuss complete metric σ-frames and show the existence of a completion for a metric σ-frame in the category MσFrm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Local Connectedness and Completion of Metric σ-Frames\",\"authors\":\"I. Naidoo\",\"doi\":\"10.1515/ms-2023-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We extend the notion of local connectedness and uniform local connectedness to the category MσFrm of metric σ-frames. We provide the construction of the uniformly locally connected reflection of a locally connected metric σ-frame. We also discuss complete metric σ-frames and show the existence of a completion for a metric σ-frame in the category MσFrm.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniform Local Connectedness and Completion of Metric σ-Frames
ABSTRACT We extend the notion of local connectedness and uniform local connectedness to the category MσFrm of metric σ-frames. We provide the construction of the uniformly locally connected reflection of a locally connected metric σ-frame. We also discuss complete metric σ-frames and show the existence of a completion for a metric σ-frame in the category MσFrm.