{"title":"突发干扰下稀疏图神经网络辅助极化码高效解码器","authors":"Shengyu Zhang , Zhongxiu Feng , Zhe Peng , Lixia Xiao , Tao Jiang","doi":"10.1016/j.dcan.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a sparse graph neural network-aided (SGNN-aided) decoder is proposed for improving the decoding performance of polar codes under bursty interference. Firstly, a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding. To further improve the decoding performance, a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network. This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks. Finally, predictions are generated by feeding the embedding vectors into a readout module. Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 359-364"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse graph neural network aided efficient decoder for polar codes under bursty interference\",\"authors\":\"Shengyu Zhang , Zhongxiu Feng , Zhe Peng , Lixia Xiao , Tao Jiang\",\"doi\":\"10.1016/j.dcan.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a sparse graph neural network-aided (SGNN-aided) decoder is proposed for improving the decoding performance of polar codes under bursty interference. Firstly, a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding. To further improve the decoding performance, a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network. This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks. Finally, predictions are generated by feeding the embedding vectors into a readout module. Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 359-364\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001773\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001773","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
In this paper, a sparse graph neural network-aided (SGNN-aided) decoder is proposed for improving the decoding performance of polar codes under bursty interference. Firstly, a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding. To further improve the decoding performance, a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network. This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks. Finally, predictions are generated by feeding the embedding vectors into a readout module. Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.