基于到达时间的源定位的全局强凸性和临界点特征

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Yuen-Man Pun , Anthony Man-Cho So
{"title":"基于到达时间的源定位的全局强凸性和临界点特征","authors":"Yuen-Man Pun ,&nbsp;Anthony Man-Cho So","doi":"10.1016/j.comgeo.2023.102077","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global strong convexity and characterization of critical points of time-of-arrival-based source localization\",\"authors\":\"Yuen-Man Pun ,&nbsp;Anthony Man-Cho So\",\"doi\":\"10.1016/j.comgeo.2023.102077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000974\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000974","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了给定到达时间测量的源定位问题的最小二乘公式。我们的研究表明,尽管该公式一般情况下是非凸的,但在锚点和源的几何配置以及测量噪声的特定条件下,该公式是全局强凸的。接下来,我们推导出最小二乘公式临界点的特征,从而得出在非常温和的测量噪声假设下临界点最大数量的约束。特别是,该结果为最小二乘公式的临界点被隔离提供了充分条件。在我们的工作之前,临界点的孤立性被视为一种假设,在本地化文献中没有任何正当理由。上述特征还引出了一种算法,该算法可以通过搜索所有临界点找到最小二乘公式的全局最优点。然后,我们建立了最小二乘估计器的估计误差上限。最后,我们的数值结果证实了理论发现,并表明无论锚点和源的几何配置如何,我们提出的算法都能获得全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global strong convexity and characterization of critical points of time-of-arrival-based source localization

In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信