{"title":"基于到达时间的源定位的全局强凸性和临界点特征","authors":"Yuen-Man Pun , Anthony Man-Cho So","doi":"10.1016/j.comgeo.2023.102077","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global strong convexity and characterization of critical points of time-of-arrival-based source localization\",\"authors\":\"Yuen-Man Pun , Anthony Man-Cho So\",\"doi\":\"10.1016/j.comgeo.2023.102077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000974\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000974","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global strong convexity and characterization of critical points of time-of-arrival-based source localization
In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.