{"title":"素数中的无限偏和集","authors":"","doi":"10.1007/s11854-023-0323-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We show that there exist infinite sets <em>A</em> = (<em>a</em><sub>1</sub>, <em>a</em><sub>2</sub>, …} and <em>B</em> = {<em>b</em><sub>1</sub>, <em>b</em><sub>2</sub>, …} of natural numbers such that <em>a</em><sub><em>i</em></sub> + <em>b</em><sub><em>j</em></sub> is prime whenever 1 ≤ <em>i</em> < <em>j</em>.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite partial sumsets in the primes\",\"authors\":\"\",\"doi\":\"10.1007/s11854-023-0323-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We show that there exist infinite sets <em>A</em> = (<em>a</em><sub>1</sub>, <em>a</em><sub>2</sub>, …} and <em>B</em> = {<em>b</em><sub>1</sub>, <em>b</em><sub>2</sub>, …} of natural numbers such that <em>a</em><sub><em>i</em></sub> + <em>b</em><sub><em>j</em></sub> is prime whenever 1 ≤ <em>i</em> < <em>j</em>.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0323-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0323-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们证明,存在自然数的无限集合 A = (a1, a2, ...}和 B = {b1, b2, ...},只要 1 ≤ i < j,ai + bj 就是质数。