考虑材料塑性的超高真空 CF 法兰接头密封参数组合研究

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
A. Davtyan, H. Isunts, A. Vardanyan, A. Azizov, V. Avagyan
{"title":"考虑材料塑性的超高真空 CF 法兰接头密封参数组合研究","authors":"A. Davtyan, H. Isunts, A. Vardanyan, A. Azizov, V. Avagyan","doi":"10.1088/1748-0221/18/12/P12010","DOIUrl":null,"url":null,"abstract":"Computer simulation and experimental research of the tightening processes of ultrahigh vacuum CF flange joints have been carried out. Finite element analyses were carried out considering the plastic properties of materials. The analysis variable parameters are flanges' knife edge angle between the shelves (Wheeler's and CERN's models), tip rounding radiuses, and gasket material state (annealed and hard). Curves of changes in the stress and strain intensities of the edge nodes of the flanges' knife edge were obtained. Essential sealing parameters of the ultrahigh vacuum system were also studied, such as the height of the knife edge, the length of the knife-edge trace on the gasket (in the radial direction), and the gap between two flanges. The mentioned sealing parameters' measurements were carried out by the combined method. The latter is a parameters' measurement of both computer simulation and experimental samples and a comparison of the obtained results. It should be noted that the sealing parameters were studied for several tightening cycles of the flanges to research their changes in case of multiple uses. The vital value of this research is obtained empirical functions for calculating the height of the flanges' knife edge based on the tightening cycles.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"237 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined research of ultra-high vacuum CF flange joints' sealing parameters considering plastic properties of materials\",\"authors\":\"A. Davtyan, H. Isunts, A. Vardanyan, A. Azizov, V. Avagyan\",\"doi\":\"10.1088/1748-0221/18/12/P12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer simulation and experimental research of the tightening processes of ultrahigh vacuum CF flange joints have been carried out. Finite element analyses were carried out considering the plastic properties of materials. The analysis variable parameters are flanges' knife edge angle between the shelves (Wheeler's and CERN's models), tip rounding radiuses, and gasket material state (annealed and hard). Curves of changes in the stress and strain intensities of the edge nodes of the flanges' knife edge were obtained. Essential sealing parameters of the ultrahigh vacuum system were also studied, such as the height of the knife edge, the length of the knife-edge trace on the gasket (in the radial direction), and the gap between two flanges. The mentioned sealing parameters' measurements were carried out by the combined method. The latter is a parameters' measurement of both computer simulation and experimental samples and a comparison of the obtained results. It should be noted that the sealing parameters were studied for several tightening cycles of the flanges to research their changes in case of multiple uses. The vital value of this research is obtained empirical functions for calculating the height of the flanges' knife edge based on the tightening cycles.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"237 \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/12/P12010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/12/P12010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

对超高真空 CF 法兰接头的拧紧过程进行了计算机模拟和实验研究。考虑到材料的塑性,进行了有限元分析。分析变量参数包括法兰架之间的刀刃角(Wheeler 模型和 CERN 模型)、尖端圆角半径和垫片材料状态(退火和硬化)。得出了法兰刀刃边缘节点应力和应变强度的变化曲线。此外,还研究了超高真空系统的基本密封参数,如刀刃高度、垫片上刀刃痕迹的长度(径向)以及两个法兰之间的间隙。上述密封参数的测量是通过组合方法进行的。后者是对计算机模拟样本和实验样本进行参数测量,并对所得结果进行比较。值得注意的是,密封参数是在多次拧紧法兰的情况下进行研究的,以研究其在多次使用情况下的变化。这项研究的重要价值在于获得了根据拧紧周期计算法兰刀刃高度的经验函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The combined research of ultra-high vacuum CF flange joints' sealing parameters considering plastic properties of materials
Computer simulation and experimental research of the tightening processes of ultrahigh vacuum CF flange joints have been carried out. Finite element analyses were carried out considering the plastic properties of materials. The analysis variable parameters are flanges' knife edge angle between the shelves (Wheeler's and CERN's models), tip rounding radiuses, and gasket material state (annealed and hard). Curves of changes in the stress and strain intensities of the edge nodes of the flanges' knife edge were obtained. Essential sealing parameters of the ultrahigh vacuum system were also studied, such as the height of the knife edge, the length of the knife-edge trace on the gasket (in the radial direction), and the gap between two flanges. The mentioned sealing parameters' measurements were carried out by the combined method. The latter is a parameters' measurement of both computer simulation and experimental samples and a comparison of the obtained results. It should be noted that the sealing parameters were studied for several tightening cycles of the flanges to research their changes in case of multiple uses. The vital value of this research is obtained empirical functions for calculating the height of the flanges' knife edge based on the tightening cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信